版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市长安区2026届数学高二上期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系中,,点P满足,设点P的轨迹为C,下列结论正确的是()A.C的方程为B.当A,B,P三点不共线时,面积的最大值为24C.当A,B,P三点不共线时,射线是的角平分线D.在C上存在点M,使得2.已知抛物线的焦点恰为双曲线的一个顶点,的另一顶点为,与在第一象限内的交点为,若,则直线的斜率为()A. B.C. D.3.若,则()A.1 B.0C. D.4.在下列函数中,求导错误的是()A., B.,C., D.,5.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.6.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.如图所示的圆形剪纸中,正六边形的所有顶点都在该圆上,若在该圆形剪纸的内部投掷一点,则该点恰好落在正六边形内部的概率为()A. B.C. D.7.已知抛物线的焦点为F,且点F与圆上点的距离的最大值为6,则抛物线的准线方程为()A. B.C. D.8.如图,双曲线的左,右焦点分别为,,过作直线与C及其渐近线分别交于Q,P两点,且Q为的中点.若等腰三角形的底边的长等于C的半焦距.则C的离心率为()A. B.C. D.9.椭圆的左右两焦点分别为,,过垂直于x轴的直线交C于A,B两点,,则椭圆C的离心率是()A. B.C. D.10.直线与直线平行,则两直线间的距离为()A. B.C. D.11.已知圆:和点,是圆上一点,线段的垂直平分线交于点,则点的轨迹方程是:()A. B.C. D.12.已知,,直线:,:,且,则的最小值为()A.2 B.4C.8 D.9二、填空题:本题共4小题,每小题5分,共20分。13.设正项等比数列的公比为,前项和为,若,则_______________.14.从正方体的8个顶点中选取4个作为项点,可得到四面体的概率为________15.某中学高一年级有420人,高二年级有460人,高三年级有500人,用分层抽样的方法抽取部分样本,若从高一年级抽取21人,则从高三年级抽取的人数是__________16.已知函数(1)求函数的最小正周期和单调递增区间;(2)在锐角三角形中,角,,所对的边分别为,,,若,,,求的面积三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司举办捐步公益活动,参与者通过捐赠每天运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,还为公司获得了相应的广告效益,据测算,首日参与活动人数为5000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为20万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元)(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?18.(12分)城南公园种植了4棵棕榈树,各棵棕榈树成活与否是相互独立的,成活率为p,设为成活棕榈树的株数,数学期望.(1)求p的值并写出的分布列;(2)若有2棵或2棵以上的棕榈树未成活,则需要补种,求需要补种棕榈树的概率.19.(12分)如图,在四棱锥中,平面平面,,,,,(Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)若点在棱上,且平面,求线段的长20.(12分)已知双曲线与双曲线的渐近线相同,且经过点.(1)求双曲线的方程;(2)已知双曲线的左右焦点分别为,直线经过,倾斜角为与双曲线交于两点,求的面积.21.(12分)若等比数列的各项为正,前项和为,且,.(1)求数列的通项公式;(2)若是以1为首项,1为公差的等差数列,求数列的前项和.22.(10分)已知数列通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意可求出C的方程为,即可根据题意判断各选项的真假【详解】对A,由可得,化简得,即,A错误;对B,当A,B,P三点不共线时,点到直线的最大距离为,所以面积的最大值为,B错误;对C,当A,B,P三点不共线时,因为,所以射线是的角平分线,C正确;对D,设,由可得点的轨迹方程为,而圆与圆的圆心距为,两圆内含,所以这样的点不存在,D错误故选:C2、D【解析】根据题意,列出的方程组,解得,再利用斜率公式即可求得结果.【详解】因为抛物线的焦点,由题可知;又点在抛物线上,故可得;又,联立方程组可得,整理得,解得(舍)或,此时,又,故直线的斜率为.故选:D.3、C【解析】由结合二项式定理可得出,利用二项式系数和公式可求得的值.【详解】,当且时,,因此,.故选:C.【点睛】关键点睛:本题考查二项式系数和的计算,解题的关键是熟悉二项式系数和公式,考查学生的转化能力与计算能力,属于基础题.4、B【解析】分别求得每个函数的导数即可判断.详解】;;;.故求导错误的是B.故选:B.5、A【解析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A6、D【解析】设圆的半径,求出圆的面积与正六边形的面积,再根据几何概型的概率公式计算可得;【详解】解:设圆的半径,则,则,所以,所以在该圆形剪纸的内部投掷一点,则该点恰好落在正六边形内部的概率;故选:D7、D【解析】先求得抛物线的焦点坐标,再根据点F与圆上点的距离的最大值为6求解.【详解】因为抛物线的焦点为F,且点F与圆上点的距离的最大值为6,所以,解得,所以抛物线准线方程为,故选:D8、C【解析】先根据等腰三角形的性质得,再根据双曲线定义以及勾股定理列方程,解得离心率.【详解】连接,由为等腰三角形且Q为的中点,得,由知.由双曲线的定义知,在中,,(负值舍去)故选:C【点睛】本题考查双曲线的定义、双曲线的离心率,考查基本分析求解能力,属基础题.9、C【解析】由题可得为等边三角形,可得,即得.【详解】∵过垂直于x轴的直线交椭圆C于A,B两点,,∴为等边三角形,由代入,可得,∴,所以,即,又,解得.故选:C.10、B【解析】先根据直线平行求得,再根据公式可求平行线之间的距离.【详解】由两直线平行,得,故,当时,,,此时,故两直线平行时又之间的距离为,故选:B.11、B【解析】先由在线段的垂直平分线上得出,再由题意得出,进而由椭圆定义可求出点的轨迹方程.【详解】如图,因为在线段的垂直平分线上,所以,又点在圆上,所以,因此,点在以、为焦点的椭圆上.其中,,则.从而点的轨迹方程是.故选:B.12、C【解析】由,可求得,再由,利用基本不等式求出最小值即可.【详解】因为,所以,即,因为,,所以,当且仅当,即时等号成立,所以的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式求最值,考查学生的计算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由可知公比,所以直接利用等比数列前项和公式化简,即可求出【详解】解:因为,所以,所以,所以,化简得,因为等比数列的各项为正数,所以,所以,故答案为:【点睛】此题考查等比数列前项和公式的应用,考查计算能力,属于基础题14、【解析】计算出正方体的8个顶点中选取4个作为项点的取法和分从上底面取一个点下底面取三个点、从上底面取二个点下底面取二个点、从上底面取三个点下底面取一个点可得到四面体的取法,由古典概型概率计算公式可得答案.【详解】正方体的8个顶点中选取4个作为项点,共有取法,可得到四面体的情况有从上底面取一个点下底面取三个点有种;从上底面取二个点下底面取二个点有种,其中当上底面和下底面取的四个点在同一平面时共有10种情况不符合,此种情况共有种;从上底面取三个点下底面取一个点有种;一个有种,所以可得到四面体的概率为.故答案为:.15、25【解析】由条件先求出抽样比,从而可求出从高三年级抽取的人数.【详解】由题意抽样比例:则从高三年级抽取的人数是人故答案为:2516、(1)最小正周期,,;(2)【解析】(1)根据降幂公式、辅助角公式化简函数的解析式,再利用正弦型函数的最小正周期公式、单调性进行求解即可;(2)根据特殊角的三角函数值,结合三角形面积公式进行求解即可.【详解】(1),所以的最小正周期令,,解得,,所以的单调递增区间为,(2)因为,所以,即,又,所以,所以或,或,当时,,不符合题意,舍去;当时,,符合题意,所以,,,,此时为等腰三角形,所以,所以,即的面积为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)8745,1686元(2)37天【解析】(1)根据等比数列的性质求出结果;(2)对活动天数进行讨论,列出不等式求出的范围即可.【小问1详解】设第天的捐步人数为,则且,∴第5天的捐步人数为由题意可知前5天的捐步人数成等比数列,其中首项为5000,公比为1.15,∴前5天的捐步总收益为元.【小问2详解】设活动第天后公司捐步总收益可以回收并有盈余,若,则,解得(舍)若,则,解得∴活动开始后第37天公司的捐步总收益可以收回启动资金并有盈余.18、(1),分布列见解析;(2).【解析】(1)根据二项分布知识即可求解;(2)将补种棕榈树的概率转化为成活的概率,结合概率加法公式即可求解.【小问1详解】由题意知,,又,所以,故未成活率为,由于所有可能的取值为0,1,2,3,4,所以,,,,,则的分布列为01234【小问2详解】记“需要补种棕榈树”为事件A,由(1)得,,所以需要补种棕榈树的概率为.19、(Ⅰ)见解析.(Ⅱ).(Ⅲ).【解析】第一问根据面面垂直的性质和线面垂直的性质得出线线垂直的结论,注意在书写的时候条件不要丢就行;第二问建立空间直角坐标系,利用法向量所成角的余弦值来求得二面角的余弦值;第三问利用向量共线的关系,得出向量的坐标,根据线面平行得出向量垂直,利用其数量积等于零,求得结果.(Ⅰ)证明:因为平面⊥平面,且平面平面,因为⊥,且平面所以⊥平面因为平面,所以⊥.(Ⅱ)解:在△中,因为,,,所以,所以⊥.所以,建立空间直角坐标系,如图所示所以,,,,,,.易知平面的一个法向量为.设平面的一个法向量为,则,即,令,则.设二面角的平面角为,可知为锐角,则,即二面角的余弦值为(Ⅲ)解:因为点在棱,所以,因为,所以,.又因为平面,为平面的一个法向量,所以,即,所以所以,所以.20、(1);(2).【解析】(1)由两条双曲线有共同渐近线,可令双曲线方程为,求出即可得双曲线的方程;(2)根据已知有直线为,由其与双曲线的位置关系,结合弦长公式、点线距离公式及三角形面积公式求的面积.【详解】(1)设所求双曲线方程为,代入点得:,即,∴双曲线方程为,即.(2)由(1)知:,即直线方程为.设,联立得,满足且,,由弦长公式得,点到直线的距离.所以【点睛】本题考查了双曲线,根据双曲线共渐近线求双曲线方程,由直线与双曲线的相交位置关系求原点与交点构成三角形的面积,综合应用了弦长公式、点线距离公式、三角形面积公式,属于基础题.21、(1)(2)【解析】(1)设公比为,则由已知可得,求出公比,再求出首项,从而可求出数列的通项公式;(2)由已知可得,而,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年医院古医疗杂志模型馆共建合同
- 2025年数字营销服务平台开发项目可行性研究报告
- 2025年都市休闲农业发展项目可行性研究报告
- 2025年人工智能在金融机构中的应用可行性研究报告
- 纹身培训协议合同
- 生猪运输合同范本
- 主人保姆协议书
- 光伏补贴协议书
- 2025年共享电单车运营平台可行性研究报告
- 国家事业单位招聘2024中国科学院植物研究所特别研究助理(博士后)招聘笔试历年参考题库典型考点附带答案详解(3卷合一)
- 红楼梦中刘姥姥课件
- 七个黄永玉的故事
- 活髓切断术教学课件
- 新生入学体检协议书
- 振荡浮子式波浪能发电创新创业项目商业计划书
- GB 3608-2025高处作业分级
- 2025年赣州市崇义县发展投资集团有限公司2025年第一批公开招聘19人笔试历年典型考点题库附带答案详解2套试卷
- 稻谷原料销售合同范本
- 老旧小区消防安全改造施工方案
- 2025年修船业行业分析报告及未来发展趋势预测
- 郑州铁路职业技术学院单招网试题库及答案
评论
0/150
提交评论