版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平凉市重点中学2026届高一数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.直线的倾斜角为A.30° B.60°C.120° D.150°3.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则4.已知cosα=,cos(α+β)=-,且α,β∈,则cos(α-β)的值等于A.- B.C.- D.5.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知过点和的直线与斜率为一2的直线平行,则m的值是A.-8 B.0C.2 D.107.如图所示,正方体中,分别为棱的中点,则在平面内与平面平行的直线A.不存在 B.有1条C.有2条 D.有无数条8.已知,,函数的零点为c,则()A.c<a<b B.a<c<bC.b<a<c D.a<b<c9.“,”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为A.1 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,将函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位,得到函数的解析式______12.已知幂函数的图象过点(2,),则___________13.已知函数,则__________.14.若不等式在上恒成立,则实数a的取值范围为____.15.若幂函数的图象经过点,则的值等于_________.16.已知幂函数的图象过点,则此函数的解析式为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面上点,且.(1)求;(2)若点,用基底表示.18.已知函数(,且).(1)判断函数的奇偶性,并予以证明;(2)求使的x的取值范围.19.已知函数,设.(1)证明:若,则;(2)若,满足,求实数m的范围.20.第四届中国国际进口博览会于2021年11月5日至10日在上海举行.本届进博会共有58个国家和3个国际组织参加国家展(国家展今年首次线上举办),来自127个国家和地区的近3000家参展商亮相企业展.更多新产品、新技术、新服务“全球首发,中国首展”专(业)精(品)尖(端)特(色)产品精华荟萃,某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2022年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x千台空调,需另投入资金R万元,且经测算,当生产10千台空调需另投入的资金R=4000万元.现每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完(1)求2022年企业年利润W(万元)关于年产量x(千台)的函数关系式;(2)2022年产量为多少(千台)时,企业所获年利润最大?最大年利润多少?(注:利润=销售额-成本)21.已知函数(为常数)是定义在上的奇函数.(1)求函数的解析式;(2)判断函数的单调性,并用定义证明;(3)若函数满足,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】先分析得到,即得点所在的象限.【详解】因为是第二象限角,所以,所以点在第四象限,故选D【点睛】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.2、A【解析】直线的斜率为,所以倾斜角为30°.故选A.3、D【解析】若,则需使得平面内有直线平行于直线;若,则需使得,由此为依据进行判断即可【详解】当时,可确定平面,当时,因为,所以,所以;当平面交平面于直线时,因为,所以,则,因为,所以,因为,所以,故A错误,D正确;当时,需使得,选项B、C中均缺少判断条件,故B、C错误;故选:D【点睛】本题考查空间中直线、平面的平行关系与垂直关系的判定,考查空间想象能力4、D【解析】∵α∈,∴2α∈(0,π).∵cosα=,∴cos2α=2cos2α-1=-,∴sin2α=,而α,β∈,∴α+β∈(0,π),∴sin(α+β)=,∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)==.5、A【解析】解两个不等式,利用集合的包含关系判断可得出结论.【详解】解不等式可得,解不等式可得或,因为或,因此,“”是“”的充分不必要条件.故选:A.6、A【解析】由题意可知kAB==-2,所以m=-8.故选A7、D【解析】根据已知可得平面与平面相交,两平面必有唯一的交线,则在平面内与交线平行的直线都与平面平行,即可得出结论.【详解】平面与平面有公共点,由公理3知平面与平面必有过的交线,在平面内与平行的直线有无数条,且它们都不在平面内,由线面平行的判定定理可知它们都与平面平行.故选:D.【点睛】本题考查平面的基本性质、线面平行的判定,熟练掌握公理、定理是解题的关键,属于基础题.8、B【解析】由函数零点存在定理可得,又,,从而即可得答案.【详解】解:因为在上单调递减,且,,所以的零点所在区间为,即.又因为,,所以a<c<b故选:B.9、A【解析】根据三角函数的诱导公式和特殊角的三角函数,结合充分必要条件的概念即可判断.【详解】,时,,,时,,所以“,”是“”的充分而不必要条件,故选:.10、D【解析】由三视图可知:此立体图形是一个底面为等腰直角三角形,一条棱垂直于底面的三棱锥;所以其体积为.故选D.考点:三视图和立体图形的转化;三棱锥的体积.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数图象的变换可得答案.【详解】将函数图象上各点的横坐标缩短到原来的倍,得,再将得到的图象向右平移个单位得故答案为:12、【解析】由幂函数所过的点求的解析式,进而求即可.【详解】由题设,若,则,可得,∴,故.故答案为:13、2【解析】先求出,然后再求的值.【详解】由题意可得,所以,故答案为:14、【解析】把不等式变形为,分和情况讨论,数形结合求出答案.【详解】解:变形为:,即在上恒成立令,若,此时在上单调递减,,而当时,,显然不合题意;当时,画出两个函数的图象,要想满足在上恒成立,只需,即,解得:综上:实数a的取值范围是.故答案为:15、【解析】设出幂函数,将点代入解析式,求出解析式即可求解.【详解】设,函数图像经过,可得,解得,所以,所以.故答案为:【点睛】本题考查了幂函数的定义,考查了基本运算求解能力,属于基础题.16、##【解析】设出幂函数,代入点即可求解.【详解】由题意,设,代入点得,解得,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)设,根据向量相等的坐标表示可得答案;(2)设,建立方程,解之可得答案【详解】解:(1)设,由点,所以,又,所以,解得所以点,所以;(2)若点,所以,,设,即,解得所以用基底表示18、(1)是奇函数,证明见解析;(2).【解析】(1)先根据对数函数的定义得函数的定义域关于原点对称,再根据函数的奇偶性定义判断即可;(2)由已知条件得,再分与两种情况讨论,结合对数函数的单调性列出不等式组,求出x的取值范围即可.【详解】(1)函数是奇函数.证明:要使函数的解析式有意义,需的解析式都有意义,即解得,所以函数的定义域是,所以函数的定义域关于原点对称.因为所以函数是奇函数.(2)若,即.当时,有解得;当时,有解得,综上所述,当时,x的取值范围是,当时,x的取值范围是.【点睛】该题考查的是有关函数的问题,涉及到的知识点有本题函数的奇偶性的判断与证明、对数函数的单调性、根据单调性解不等式,不用对参数进行讨论,属于中档题目.19、(1)证明见解析(2)【解析】(1)先判断为偶函数,再由单调性的定义可得函数在单调递增,从而当时,有,进而可得结论,(2)将不等式转化为,再由的奇偶性和单调性可得,所以将问题转化为,换元后变形利用基本不等式可求得结果【小问1详解】证明:因,所以函数为偶函数.任取,不妨设,则当时,,所以,即,由单调性定义知,函数在单调递增,所以,当时,,即,即【小问2详解】由整理得,由(1)知,在上单调递增,且为偶函数,易证在上单调递减,因为,所以,故,即,由题意知,,即令,因为,由单调性可知,,由基本不等式得,,当且仅当,即时,等号成立.即,故.【点睛】关键点点睛:此题考查函数奇偶性的判断,函数单调性的证明,考查不等式恒成立问题,解题的关键是将问题转化为,然后分离参数得,换元整理后利用基本不等式可求得结果,考查数学转化思想和计算能力,属于中档题20、(1)(2)当2022年产量为100千台时,企业的利润最大,最大利润为8990万元【解析】(1)分段讨论即可;(2)分段求最值,再比较即可【小问1详解】由题意知,当x=10时,所以a=300当时,当时,所以【小问2详解】当0<x<40时,,所以,当x=30时,W有最大值,最大值为8740当时,当且仅当即x=100时,W有最大值,最大值为8990因为8740<8990,所以当2022年产量为100千台时,企业的利润最大,最大利润为8990万元.21、(1)(2)在上单调递减,证明见解析(3)【解析】(1)依题意可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年交管12123学法减分复习考试题库附完整答案【名师系列】
- 品牌经理面试题及品牌战略解析
- 2026年安全员考试题库300道带答案(b卷)
- 2025年安康职业技术学院辅导员考试笔试题库附答案
- 上海隔离租房合同范本
- 2026年注册安全工程师题库300道及答案【考点梳理】
- 2026年机械员考试题库及完整答案【考点梳理】
- 2026年一级注册建筑师之建筑经济、施工与设计业务管理考试题库300道及答案【夺冠】
- 2025年音乐学小组考试题及答案
- 2025湖北武汉汉口学院保洁招聘考试笔试模拟试题及答案解析
- 高一语文经典古代诗词赏析
- 协助扣划存款通知书
- 自动控制原理课程设计报告恒温箱
- 江西d照驾驶员理论考试
- 水利水电工程建设参建各方安全生产职责
- GB/T 30340-2013机动车驾驶员培训机构资格条件
- GB/T 19215.1-2003电气安装用电缆槽管系统第1部分:通用要求
- GB/T 13298-2015金属显微组织检验方法
- 滴滴打车用户出行习惯报告
- 核对稿-400单元开车
- 保密管理-保密教育培训签到簿
评论
0/150
提交评论