甘肃省武威第八中学2026届高一上数学期末学业质量监测模拟试题含解析_第1页
甘肃省武威第八中学2026届高一上数学期末学业质量监测模拟试题含解析_第2页
甘肃省武威第八中学2026届高一上数学期末学业质量监测模拟试题含解析_第3页
甘肃省武威第八中学2026届高一上数学期末学业质量监测模拟试题含解析_第4页
甘肃省武威第八中学2026届高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省武威第八中学2026届高一上数学期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调递减区间为A. B.C. D.2.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.3.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,则实数a的取值范围是()A.(4,+∞) B.(0,4)C.(﹣∞,0) D.(﹣∞,0)∪(4,+∞)4.已知,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知,,,则()A. B.C. D.26.已知,则()A. B.C.5 D.-57.已知正实数x,y,z,满足,则()A. B.C. D.8.函数的定义域是()A. B.C. D.(0,4)9.下列函数是奇函数,且在区间上是增函数的是A. B.C. D.10.已知,,,下列不等式正确个数有()①,②,③,④.A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则_________12.已知,,则的值为_______.13.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______14.下列说法正确的序号是__________________.(写出所有正确的序号)①正切函数在定义域内是增函数;②已知函数的最小正周期为,将的图象向右平移个单位长度,所得图象关于轴对称,则的一个值可以是;③若,则三点共线;④函数的最小值为;⑤函数在上是增函数,则的取值范围是.15.若函数(,且)在上是减函数,则实数的取值范围是__________.16.若两个正实数,满足,且不等式恒成立,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且.(1)求实数a的值;(2)判断函数在上的单调性,并证明.18.函数是定义在上的奇函数,且(1)确定的解析式(2)判断在上的单调性,并利用函数单调性的定义证明;(3)解关于的不等式19.若函数在定义域内存在实数使成立,则称函数有“漂移点”.(1)函数是否有漂移点?请说明理由;(2)证明函数在上有漂移点;(3)若函数在上有漂移点,求实数的取值范围.20.已知直线与的交点为.(1)求交点的坐标;(2)求过交点且平行于直线的直线方程.21.已知函数,其中.(1)若函数的周期为,求函数在上的值域;(2)若在区间上为增函数,求的最大值,并探究此时函数的零点个数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据所给的二次函数的二次项系数大于零,得到二次函数的图象是一个开口向上的抛物线,根据对称轴,考查二次函数的变化区间,得到结果【详解】解:函数的二次项的系数大于零,抛物线的开口向上,二次函数的对称轴是,函数的单调递减区间是故选A【点睛】本题考查二次函数的性质,属于基础题2、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法3、A【解析】令,利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可.【详解】令,∵方程的一根小于,另一根大于,∴,即,解得,即实数的取值范围是,故选A.【点睛】本题考查一元二次函数的零点与方程根的关系,数形结合思想在一元二次函数中的应用,是基本知识的考查4、C【解析】利用不等式的性质和充要条件的判定条件进行判定即可.【详解】因为,,所以成立;又,,所以成立;所以当时,“”是“”的充分必要条件.故选:C.5、D【解析】利用同角三角函数关系式可求,再应用和角正切公式即求.【详解】∵,,∴,,∴.故选:D.6、C【解析】令,代入直接计算即可.【详解】令,即,则,故选:C.7、A【解析】根据指数函数和对数函数的图像比较大小即可.【详解】令,则,,,由图可知.8、C【解析】根据对数函数的单调性,结合二次根式的性质进行求解即可.【详解】由,故选:C9、B【解析】逐一考查所给函数的单调性和奇偶性即可.【详解】逐一考查所给函数的性质:A.,函数为奇函数,在区间上不具有单调性,不合题意;B.,函数为奇函数,在区间上是增函数,符合题意;C.,函数为非奇非偶函数,在区间上是增函数,不合题意;D.,函数为奇函数,在区间上不具有单调性,不合题意;本题选择B选项.【点睛】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.10、D【解析】由于,得,根据基本不等式对选项一一判断即可【详解】因,,,所以,得,当且仅当时取等号,②对;由,当且仅当时取等号,①对;由得,所以,当且仅当时取等号,③对;由,当且仅当时取等号,④对故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】根据分段函数的定义即可求解.【详解】解:因为函数,所以,所以,故答案为:1.12、-.【解析】将和分别平方计算可得.【详解】∵,∴,∴,∴,又∵,∴,∴,故答案为:-.【点晴】此题考同脚三角函数基本关系式应用,属于简单题.13、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.14、③⑤【解析】对每一个命题逐一判断得解.【详解】①正切函数在内是增函数,所以该命题是错误的;②因为函数的最小正周期为,所以w=2,所以将的图象向右平移个单位长度得到,所得图象关于轴对称,所以,所以的一个值不可以是,所以该命题是错误的;③若,因为,所以三点共线,所以该命题是正确的;④函数=,所以sinx=-1时,y最小为-1,所以该命题是错误的;⑤函数在上是增函数,则,所以的取值范围是.所以该命题是正确的.故答案为③⑤【点睛】本题主要考查正切函数的单调性,考查正弦型函数的图像和性质,考查含sinx的二次型函数的最值的计算,考查对数型函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.15、【解析】根据分段函数的单调性,列出式子,进行求解即可.【详解】由题可知:函数在上是减函数所以,即故答案为:16、【解析】根据题意,只要即可,再根据基本不等式中的“”的妙用,求得,解不等式即可得解.【详解】根据题意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)增函数,证明见解析【解析】(1)根据,由求解;(2)利用单调性的定义证明.【小问1详解】解:∵,且,∴,∴;【小问2详解】函数在上是增函数.任取,不妨设,则,,∵且,∴,,,∴,即,∴在上是增函数.18、(1)(2)增函数,证明见解析(3)【解析】(1)根据奇偶性的定义与性质求解(2)由函数的单调性的定义证明(3)由函数奇偶性和单调性,转化不等式后再求解【小问1详解】根据题意,函数是定义在上的奇函数,则,解可得;又由,则有,解可得;则【小问2详解】由(1)的结论,,在区间上为增函数;证明:设,则又由,则,,,,则,即则函数在上为增函数.【小问3详解】由(1)(2)知为奇函数且在上为增函数.,解可得:,即不等式的解集为.19、(1)没有,理由见解析;(2)证明见解析;(3).【解析】(1)根据给定定义列方程求解判断作答.(2)根据给定定义构造函数,由零点存在性定理判断函数的零点情况即可作答.(3)根据给定定义列方程,变形构造函数,利用函数有零点分类讨论计算作答.【小问1详解】假设函数有“漂移点”,则,此方程无实根,所以函数没有漂移点.【小问2详解】令,,则,有,即有,而函数在单调递增,因此,在上有一个实根,所以函数在上有漂移点.小问3详解】依题意,设在上的漂移点为,则,即,亦即,整理得:,由已知可得,令,,则在上有零点,当时,的图象的对称轴为,而,则,即,整理得,解得,则,当时,,0,则不成立,当时,,在上单调递增,又,则恒大于0,因此,在上没有零点.综上得,.【点睛】思路点睛:涉及一元二次方程的实根分布问题,可借助二次函数的图象及其性质,利用数形结合的方法解决问题.20、(1)点的坐标是;(2)直线方程为.【解析】(1)联立两条直线的方程得到交点坐标;(2)根据条件可设所求直线方程为,将P点坐标代入得到参数值解析:(1)由解得所以点的坐标是.(2)因为所求直线与平行,所以设所求直线方程为把点坐标代入得,得故所求的直线方程为.21、(1)(2)最大值为,6个【解析】(1)根据正弦的二倍角公式和辅助角公式可得,利用求出,进而求出,结合三角函数的性质即可得出结果;(2)利用三角函数的性质求出的单调增区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论