山东省滨州市十二校2026届数学高一上期末检测模拟试题含解析_第1页
山东省滨州市十二校2026届数学高一上期末检测模拟试题含解析_第2页
山东省滨州市十二校2026届数学高一上期末检测模拟试题含解析_第3页
山东省滨州市十二校2026届数学高一上期末检测模拟试题含解析_第4页
山东省滨州市十二校2026届数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省滨州市十二校2026届数学高一上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.2.已知直线:与:平行,则的值是().A.或 B.或C.或 D.或3.若===1,则a,b,c的大小关系是()A.a>b>c B.b>a>cC.a>c>b D.b>c>a4.已知函数是幂函数,且在上是减函数,则实数m的值是()A或2 B.2C. D.15.函数的图像可能是().A. B.C. D.6.已知函数,若,则x的值是()A.3 B.9C.或1 D.或37.命题p:,的否定是()A., B.,C., D.,8.已知,则它们的大小关系是()A. B.C. D.9.已知集合,则(

)A. B.C. D.10.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最大值为_______12.已知集合A={x|2x>1},B={x|log2x<0},则∁AB=___13.命题“”的否定是_________.14.函数y=的定义域是______.15.以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体的表面积为__________16.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知甲乙两人的投篮命中率分别为,如果这两人每人投篮一次,求:(1)两人都命中的概率;(2)两人中恰有一人命中的概率.18.已知函数.(1)求,的值;(2)在给定的坐标系中,画出的图象(不必列表);(3)若关于的方程恰有3个不相等的实数解,求实数的取值范围.19.已知函数,,其中a为常数当时,设函数,判断函数在上是增函数还是减函数,并说明理由;设函数,若函数有且仅有一个零点,求实数a的取值范围20.已知偶函数.(1)求实数的值;(2)经过研究可知,函数在区间上单调递减,求满足条件的实数a的取值范围.21.已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.2、C【解析】当k-3=0时,求出两直线的方程,检验是否平行;当k-3≠0时,由一次项系数之比相等且不等于常数项之比,求出k的值解:由两直线平行得,当k-3=0时,两直线方程分别为y=-1和y=3/2,显然两直线平行.当k-3≠0时,由,可得k=5.综上,k的值是3或5,故选C3、D【解析】由求出的值,由求得的值,由=1求得的值,从而可得答案【详解】由,可得故,由,可得,故,由,可得,故,故选D【点睛】本题主要考查对数的定义,对数的运算性质的应用,属于基础题.4、C【解析】由函数是幂函数可得,解得或2,再讨论单调性即可得出.【详解】是幂函数,,解得或2,当时,在上是减函数,符合题意,当时,在上是增函数,不符合题意,.故选:C.5、D【解析】∵,∴,∴函数需向下平移个单位,不过(0,1)点,所以排除A,当时,∴,所以排除B,当时,∴,所以排除C,故选D.考点:函数图象的平移.6、A【解析】分段解方程即可.【详解】当时,,解得(舍去);当时,,解得或(舍去).故选:A7、C【解析】根据特称命题的否定是全称命题即可求解.【详解】解:命题p:,的否定是:,,故选:C.8、B【解析】根据幂函数、指数函数性质判断大小关系.【详解】由,所以.故选:B9、B【解析】直接利用两个集合的交集的定义求得M∩N【详解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},则M∩N={x|-1≤x<2},故选B【点睛】本题主要考查两个集合的交集的定义和求法,属于基础题10、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】消元,转化为求二次函数在闭区间上的最值【详解】,,时,取到最大值,故答案为:12、[1,+∞)【解析】由指数函数的性质化简集合;由对数函数的性质化简集合,利用补集的定义求解即可.【详解】,所以,故答案为.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且不属于集合的元素的集合.13、,【解析】根据全称命题的否定形式,直接求解.【详解】全称命题“”的否定是“,”.故答案为:,14、【解析】要使函数有意义,需满足,函数定义域为考点:函数定义域15、【解析】以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体为圆锥,圆锥的底面半径,母线长,该几何体的表面积为:.故答案为16、或或【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件.(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.56;(2)0.38.【解析】(1)利用相互独立事件概率计算公式,求得两人都命中的概率.(2)利用互斥事件概率公式和相互独立事件概率计算公式,求得恰有一人命中的概率.【详解】记事件A,B分别为“甲投篮命中",“乙投篮命中”,则.(1)“两人都命中”为事件AB,由于A,B相互独立,所以,即两人都命中的概率为0.56.(2)由于互斥且A,B相互独立,所以恰有1人命中概率为.即恰有一人命中的概率为0.38.【点睛】关键点睛:本小题主要考查相互独立事件概率计算,考查互斥事件概率公式,关键在于准确地理解题意和运用公式求解.18、(1),(2)图象见解析(3)【解析】(1)由函数解析式直接代入求解;(2)根据函数解析式及函数的性质画出图象;(3)利用数形结合的方法可求解.【小问1详解】由解析可得:,因,所以.【小问2详解】函数的图象如下:【小问3详解】方程有3个不相等的实数解等价于函数的图象与的图象有三个交点,结合(2)中的图象可得的取值范围为.19、(1)见解析;(2),【解析】代入a的值,求出的解析式,判断函数的单调性即可;由题意把函数有且仅有一个零点转化为有且只有1个实数根,通过讨论a的范围,结合二次函数的性质得到关于a的不等式组,解出即可【详解】(1)由题意,当时,,则,因为,又由在递减,所以递增,所以根据复合函数的单调性,可得函数在单调递增函数;由,得,即,若函数有且只有1个零点,则方程有且只有1个实数根,化简得,即有且只有1个实数根,时,可化为,即,此时,满足题意,当时,由得:,解得:或,当即时,方程有且只有1个实数根,此时,满足题意,当即时,若是的零点,则,解得:,若是的零点,则,解得:,函数有且只有1个零点,所以或,,综上,a的范围是,【点睛】本题主要考查了函数与方程的综合应用,其中解答中涉及到函数的单调性,函数的零点,以及二次函数的性质等知识点的综合应用,同时把函数有且仅有一个零点转化为方程有且只有1个实数根,合理令二次函数的性质,分类讨论是解答的关键,着重考查了转化思想,分类讨论思想,以及推理与运算能力,属于中档试题.20、(1)0(2)【解析】(1)首先求出函数的定义域,再根据偶函数的性质,利用特殊值求出参数的值,再代入检验即可;(2)根据偶函数的性质将函数不等式转化为自变量的不等式,解得即可.【小问1详解】解:由,有,可得函数的定义域为,,由函数为偶函数,有,解得.当时,,由,可知此时函数为偶函数,符合题意,由上知实数m的值为0;【小问2详解】解:由函数为偶函数,且函数在区间上单调递减,可得函数在区间上单调递增,若,有解得且,故实数a的取值范围为.21、(1)(2)【解析】(1)根据表格提供的数据画出函数图象,求出、和、的值,写出的解析式即可;(2)由函数的最小正周期求出的值,再利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论