2026届内蒙古阿左旗高级中学高一上数学期末联考模拟试题含解析_第1页
2026届内蒙古阿左旗高级中学高一上数学期末联考模拟试题含解析_第2页
2026届内蒙古阿左旗高级中学高一上数学期末联考模拟试题含解析_第3页
2026届内蒙古阿左旗高级中学高一上数学期末联考模拟试题含解析_第4页
2026届内蒙古阿左旗高级中学高一上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届内蒙古阿左旗高级中学高一上数学期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若圆锥的高等于底面直径,则它的底面积与侧面积之比是A. B.C. D.2.已知函数,若方程有8个相异实根,则实数b的取值范围为()A. B.C. D.3.已知为常数,函数在内有且只有一个零点,则常数的值形成的集合是A. B.C. D.4.已知角终边经过点,且,则的值是()A. B.C. D.5.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,6.如图,在正方体中,异面直线与所成的角为()A.90° B.60°C.45° D.30°7.已知函数的定义域为[1,10],则的定义域为()A. B.C. D.8.已知函数在区间是减函数,则实数a的取值范围是A. B.C. D.9.已知集合A={t2+s2|t,s∈Z},且x∈A,y∈A,则下列结论正确的是Ax+y∈AB.x-y∈AC.xy∈AD.10.我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知表示这个数中最大的数.能够说明“对任意,都有”是假命题的一组整数的值依次可以为_____12.如果满足对任意实数,都有成立,那么a的取值范围是______13.不等式tanx+14.已知函数f(x)=lg(x2+2ax-5a)在[2,+∞)上是增函数,则a的取值范围为______15.已知,,,则有最大值为__________16.已知则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,正方形ABCD所在平面与半圆孤所在平面垂直,M是上异于C,D的点(1)证明:平面AMD⊥平面BMC;(2)若正方形ABCD边长为1,求四棱锥M﹣ABCD体积的最大值18.(1)已知,求的值;(2)已知,,且,求的值19.已知函数.(1)求的最小正周期和最大值;(2)讨论在上的单调性.20.化简求值:(1);(2).21.如图所示,在三棱柱ABC­A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】设圆锥的底面半径为,则高为,母线长则,,,选C.2、B【解析】画出的图象,根据方程有个相异的实根列不等式,由此求得的取值范围.【详解】画出函数的图象如图所示,由题意知,当时,;当时,.令,则原方程化为.∵方程有8个相异实根,∴关于t的方程在上有两个不等实根.令,,∴,解得.故选:B3、C【解析】分析:函数在内有且只有一个零点,等价于,有一个根,函数与只有一个交点,此时,,详解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零点只有一个,∴函数与只有一个交点,此时,,.故选C.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.4、A【解析】由终边上的点及正切值求参数m,再根据正弦函数的定义求.【详解】由题设,,可得,所以.故选:A5、B【解析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【点睛】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.6、B【解析】连接,可证明,然后可得即为异面直线与所成的角,然后可求出答案.【详解】连接,因为是正方体,所以和平行且相等所以四边形是平行四边形,所以,所以为异面直线与所成的角.因为是等边三角形,所以故选:B7、B【解析】根据函数的定义域,结合要求的函数形式,列出满足条件的定义域关系,求解即可.【详解】由题意可知,函数的定义域为[1,10],则函数成立需要满足,解得.故选:B.8、C【解析】先由题意得到二次函数在区间是增函数,且在上恒成立;列出不等式组求解,即可得出结果.【详解】因为函数在区间是减函数,所以只需二次函数在区间是增函数,且在上恒成立;所以有:,解得;故选C【点睛】本题主要考查由对数型复合函数的单调性求参数的问题,熟记对数函数与二次函数的性质即可,属于常考题型.9、C【解析】∵集合A={t2+s2∣∣t,s∈Z},∴1∈A,2∈A,1+2=3∉A,故A“x+y∈A”错误;又∵1−2=−1∉A,故B“x−y∈A”错误;又∵,故D“∈A”错误;对于C,由,设,且.则.且,所以.故选C.10、B【解析】由题,根据向量加减数乘运算得,进而得.【详解】解:因为在“赵爽弦图”中,若,所以,所以,所以,所以.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】首先利用新定义,再列举命题为假命题的一组数值,再根据定义,验证命题是假命题.【详解】设,,则,而,,故命题为假命题,故依次可以为故答案为:(答案不唯一)12、【解析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.13、kπ,π4【解析】根据正切函数性质求解、【详解】由正切函数性质,由tanx+π4≥1得所以kπ≤x<kπ+π4,故答案为:[kπ,kπ+π414、【解析】利用对数函数的定义域以及二次函数的单调性,转化求解即可【详解】解:函数f(x)=lg(x2+2ax﹣5a)在[2,+∞)上是增函数,可得:,解得a∈[﹣2,4)故答案为[﹣2,4)【点睛】本题考查复合函数的单调性的应用,考查转化思想以及计算能力15、4【解析】分析:直接利用基本不等式求xy的最大值.详解:因为x+y=4,所以4≥,所以故答案为4.点睛:(1)本题主要考查基本不等式,意在考查学生对该基础知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.16、【解析】分段函数的求值,在不同的区间应使用不同的表达式.【详解】,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)先证明BC⊥平面CMD,推出DM⊥BC,然后证明DM⊥平面BMC,由线面垂直推出面面垂直;(2)当M位于半圆弧CD的中点处时,四棱锥M﹣ABCD的高最大,体积也最大,相应数值代入棱锥的体积公式即可得解.【详解】(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD,∵BC⊥CD,BC在平面ABCD内,∴BC⊥平面CMD,故DM⊥BC,又DM⊥CM,BC∩CM=C,∴DM⊥平面BMC,又DM在平面AMD内,∴平面AMD⊥平面BMC;(2)依题意,当M位于半圆弧CD的中点处时,四棱锥M﹣ABCD的高最大,体积也最大,因为正方形边长为1,所以半圆的半径为,此时四棱锥M﹣ABCD的体积为,故四棱锥M﹣ABCD体积的最大值为【点睛】本题考查面面垂直的证明,需转化为证明线面垂直,考查棱锥的体积计算,属于中档题.18、(1)(2),【解析】(1)先求得,然后对除以,再分子分母同时除以,将表达式变为只含的形式,代入的值,从而求得表达式的值.(2)利用诱导公式化简已知条件,平方相加后求得的值,进而求得的值,接着求得的值,由此求得的大小.【详解】(1)(2)由已知条件,得,两式求平方和得,即,所以.又因为,所以,把代入得.考虑到,得.因此有,【点睛】本小题主要考查利用齐次方程来求表达式的值,考查利用诱导公式和同角三角函数的基本关系式化简求值,考查特殊角的三角函数值.形如,或者的表达式,通过分子分母同时除以或者,转化为的形式.19、(1)最小正周期,最大值为;(2)在单调递增,在单调递减.【解析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得的最小正周期和最大值;(2)根据,利用正弦函数的单调性,分类讨论求得的单调性.【详解】(1),则的最小正周期为,当,即时,取得最大值为;(2)当时,,则当,即时,为增函数;当时,即时,为减函数,在单调递增,在单调递减.【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.20、(1)(2)【解析】(1)根据根式的性质,指数运算公式,对数运算公式化简计算;(2)根据诱导公式和同角关系化简.【小问1详解】原式.【小问2详解】原式.21、(1)证明见解析;(2)证明见解析.【解析】(1)证明,再由,由平行公理证明,证得四点共面;(2)证明,证得面,再证得,证得面,从而证得平面EFA1∥平面BCHG.【详解】(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面(2)∵E,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论