版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市南安市第一中学2026届数学高一上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的值为()A. B.C. D.2.函数(且)的图像恒过定点()A. B.C. D.3.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.4.已知函数在区间上单调递增,则实数a的取值范围为()A. B.C. D.5.已知,且,则下列不等式恒成立的是()A. B.C. D.6.已知集合,则()A. B.C. D.7.若一元二次不等式的解集为,则的值为()A. B.0C. D.28.满足2,的集合A的个数是A.2 B.3C.4 D.89.已知函数关于x的方程有4个根,,,,则的取值范围是()A. B.C. D.10.若,,且,,则函数与函数在同一坐标系中的图像可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若且,则取值范围是___________12.函数的定义域是______________.13.已知,,,则的最大值为___________.14.梅州城区某公园有一座摩天轮,其旋转半径30米,最高点距离地面70米,匀速运行一周大约18分钟.某人在最低点的位置坐上摩天轮,则第12分钟时,他距地面大约为___________米.15.已知且,且,函数的图象过定点A,A在函数的图象上,且函数的反函数过点,则______.16.已知函数(且)的图象过定点,则点的坐标为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象在定义域(0,+∞)上连续不断,若存在常数T>0,使得对于任意的x>0,恒成立,称函数满足性质P(T).(1)若满足性质P(2),且,求的值;(2)若,试说明至少存在两个不等的正数T1、T2,同时使得函数满足性质P(T1)和P(T2);(3)若函数满足性质P(T),求证:函数存在零点.18.在三棱柱中,侧棱底面,点是的中点.(1)求证:;(2)求证:;(3)求直线与平面所成的角的正切值.19.已知,向量,,记函数,且函数的图象相邻两对称轴间的距离为.(1)求函数的解析式;(2)若关于的方程在上有三个不相等的实数根,求的取值范围.20.如图所示,在中,,,与相交于点.(1)用,表示,;(2)若,证明:,,三点共线.21.已知函数,.(1)解不等式:;(2)若函数在区间上存在零点,求实数的取值范围;(3)若函数的反函数为,且,其中为奇函数,为偶函数,试比较与的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,故选D.2、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.3、C【解析】根据三角函数的周期变换和平移变换的原理即可得解.【详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.4、D【解析】根据二次函数的单调性进行求解即可.【详解】当时,函数是实数集上的减函数,不符合题意;当时,二次函数的对称轴为:,由题意有解得故选:D5、D【解析】对A,C利用特殊值即可判断;对B,由对数函数的定义域即可判断,对D,由指数函数的单调性即可判断.【详解】解:对A,令,,则满足,但,故A错误;对B,若使,则需满足,但题中,故B错误;对C,同样令,,则满足,但,故C错误;对D,在上单调递增,当时,,故D正确.故选:D.6、B【解析】利用集合间的关系,集合的交并补运算对每个选项分析判断.【详解】由题,故A错;∵,,∴,B正确;,C错;,D错;故选:B7、C【解析】由不等式与方程的关系转化为,从而解得【详解】解:∵不等式kx2﹣2x+k<0的解集为{x|x≠m},∴,解得,k=﹣1,m=﹣1,故m+k=﹣2,故选:C8、C【解析】由条件,根据集合的子集的概念与运算,即可求解【详解】由题意,可得满足2,的集合A为:,,,2,,共4个故选C【点睛】本题主要考查了集合的定义,集合与集合的包含关系的应用,其中熟记集合的子集的概念,准确利用列举法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题9、B【解析】依题意画出函数图象,结合图象可知且,,即可得到,则,再令,根据二次函数的性质求出的取值范围,最后根据对勾函数的性质计算可得;【详解】解:因,所以函数图象如下所示:由图象可知,其中,其中,,,则,得..令,,又在上单调减,,即.故选:B.10、B【解析】结合指数函数、对数函数的图象按和分类讨论【详解】对数函数定义域是,A错;C中指数函数图象,则,为减函数,C错;BD中都有,则,因此为增函数,只有B符合故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】分类讨论解对数不等式即可.【详解】因为,所以,当时,可得,当时,可得.所以或故答案为:或12、【解析】根据表达式有意义列条件,再求解条件得定义域.【详解】由题知,,整理得解得.所以函数定义域是.故答案为:.13、【解析】由题知,进而令,,再结合基本不等式求解即可.【详解】解:,当时取等,所以,故令,则,所以,当时,等号成立.所以的最大值为故答案为:14、55【解析】建立平面直角坐标系,第分钟时所在位置的高度为,设出其三角函数的表达式,由题意,得出其周期,求出解析式,然后将代入,可得答案.【详解】如图设为地面,圆为摩天轮,其旋转半径30米,最高点距离地面70米.则摩天轮的最低点离地面10米,即以所在直线为轴,所在直线为轴,建立平面直角坐标系.某人在最低点的位置坐上摩天轮,则第分钟时所在位置的高度为则由题意,,则,所以当时,故答案为:5515、8【解析】由图象平移变换和指数函数的性质可得点A坐标,然后结合反函数的性质列方程组可解.【详解】函数的图象可以由的图象向右平移2各单位长度,再向上平移3个单位长度得到,故点A坐标为,又的反函数过点,所以函数过点,所以,解得,所以.故答案为:816、【解析】令,结合对数的运算即可得出结果.【详解】令,得,又因此,定点的坐标为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0;(2)证明见解析;(3)证明见解析.【解析】(1)由满足性质可得恒成立,取可求,取可求,由此可求的值;(2)设满足,利用零点存在定理证明关于的方程至少有两个解,证明至少存在两个不等的正数,同时使得函数满足性质和;(3)分别讨论,,时函数的零点的存在性,由此完成证明.【小问1详解】因为满足性质,所以对于任意的x,恒成立.又因为,所以,,由可得,所以,;【小问2详解】若正数满足,等价于,记,显然,,因为,所以,,即.因为的图像连续不断,所以存,使得,因此,至少存在两个不等的正数,使得函数同时满足性质和.【小问3详解】若,则1即为零点;因为,若,则,矛盾,故,若,则,,,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,若,则由,可得,由,可得,由,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,综上,函数存在零点.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.18、(1)见解析(2)见解析(3)【解析】【试题分析】(1)依据题设运用线面平行的判定定理进行分析推证;(2)借助题设条件先证明线面垂直,再运用线面垂直的性质定理进行推证;(3)先运用线面角的定义找出线面角,再运用解三角形求其正切值:(1)如图,令分别为的中点,又∵(2)证明:∠⊥在直三棱柱中,⊥又⊥平面,又⊥(3)由(2)得AC⊥平面∴直线是斜线在平面上的射影∴是直线与平面所成的角.在中,∴,即求直线与平面的正切值为.点睛:立体几何是高中数学重点内容之一,也是高考重点考查的考点和热点.这类问题的设置目的是考查空间线面的位置关系及角度距离的计算.求解本题第一问时,直接依据题设运用线面平行的判定定理进行分析推证;求解第二问,充分借助题设条件先证明线面垂直,再运用线面垂直的性质定理从而使得问题获证;求解第三问时,先运用线面角的定义找出线面角,再运用解三角形求其正切值使得问题获解19、(1).(2)【解析】(1)化简的解析式,并根据图象相邻两对称轴间的距离求得.(2)利用换元法,结合二次函数零点分布的知识,列不等式组来求得的取值范围.【小问1详解】,由于函数的图象相邻两对称轴间的距离为,所以,所以.【小问2详解】,或,,,所以直线是的对称轴.依题意,关于的方程在上有三个不相等的实数根,设,则,设,则的两个不相等的实数根满足①或②,对于①,,此时,由解得,不符合.对于②,,即.所以的取值范围是.20、(1),;(2)见解析【解析】(1)首先根据题中所给的条件,可以求得,从而有,将代入,整理求得结果,同理求得;(2)根据条件整理得到,从而得到与共线,即,,三点共线,证得结果.【详解】(1)解:因为,所以,所以.因为,所以,所以.(2)证明:因为,所以.因为,所以,即与共线.因为与的有公共点,所以,,三点共线.【点睛】该题考查的是有关向量的问题,涉及到的知识点有平面向量基本定理,利用向量共线证得三点共线,属于简单题目.21、(1)或;(2);(3)【解析】(1)根据二次不等式和对数不等式的解法求解即可得到所求;(2)由可得,故所求范围即为函数在区间上的值域,根据换元法求出函数的值域即可;(3)根据题意可求出,进而得到和,于是可得大小关系【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能家电产品介绍
- 投资项目评估案例分析
- 外科病房出院宣教
- 电动车买卖合同标准范本解析
- 门诊患者跌倒评估要点
- 施工企业安全风险评估案例
- 中班班级管理介绍
- 生态系统的结构和功能
- 2025版胰腺癌常见症状及护理建议培训
- 骨科骨质疏松预防措施
- 胶质瘤的围手术期护理
- 数据库应用技术-004-国开机考复习资料
- 手卫生执行率PDCA案例实施分析
- 病理学考试练习题库及答案
- 2025年新高考1卷(新课标Ⅰ卷)语文试卷
- 2025-2030中国女鞋行业市场现状供需分析及投资评估规划分析研究报告
- 2025至2030中国物理气相沉积(PVD)设备行业行情监测与发展动向追踪报告
- 2025年中国EP级蓖麻油行业市场前景预测及投资价值评估分析报告
- 散酒采购合同协议
- 工控网管理制度
- 大学英语四级考试2024年12月真题(第一套)Part II Listening Comprehension
评论
0/150
提交评论