版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届吉林省白城市洮南第十中学高二上数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点到直线的距离是()A. B.C. D.2.已知双曲线,过左焦点且与轴垂直的直线与双曲线交于、两点,若弦的长恰等于实铀的长,则双曲线的离心率为()A. B.C. D.3.函数的最小值是()A.2 B.4C.5 D.64.已知为虚数单位,复数是纯虚数,则()A B.4C.3 D.25.已知一组数据为:2,4,6,8,这4个数的方差为()A.4 B.5C.6 D.76.已知随机变量服从正态分布,且,则()A.0.6 B.0.4C.0.3 D.0.27.已知点、为椭圆的左、右焦点,若点为椭圆上一动点,则使得的点的个数为()A. B.C. D.不能确定8.已知椭圆和双曲线有共同焦点,是它们一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值为A.3 B.2C. D.9.已知实数x,y满足,则的最大值为()A. B.C.2 D.110.椭圆的焦点坐标为()A., B.,C., D.,11.在中,、、所对的边分别为、、,若,,,则()A. B.C. D.12.若椭圆对称轴是坐标轴,长轴长为,焦距为,则椭圆的方程()A. B.C.或 D.以上都不对二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且与的夹角为钝角,则x的取值范围是___.14.已知等比数列满足:,,,则公比______.15.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.16.已知定义在上的偶函数的导函数为,当时,有,且,则使得成立的的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知公差不为零的等差数列的前项和为,,且,,成等比数列(1)求的通项公式;(2)记,求数列的前项和18.(12分)如图,在四棱锥中,平面,,且,,,,,为的中点(1)求证:平面;(2)在线段上是否存在一点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由19.(12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱底面ABCD,,,E为PB中点,F为PC上一点,且(1)求证:;(2)求平面DEF与平面ABCD所成锐二面角的余弦值20.(12分)设数列的前项和,且成等差数列.(1)求数列的通项公式;(2)记数列前项和,求使成立的的最小值21.(12分)已知为坐标原点,圆的圆心在轴上,点、均在圆上.(1)求圆的标准方程;(2)若直线与椭圆交于两个不同的点、,点在圆上,求面积的最大值.22.(10分)已知函数的两个极值点之差的绝对值为.(1)求的值;(2)若过原点的直线与曲线在点处相切,求点的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】直接使用点到直线距离公式代入即可.【详解】由点到直线距离公式得故选:B2、B【解析】求出,进而求出,之间的关系,即可求解结论【详解】解:由题意,直线方程为:,其中,因此,设,,,,解得,得,,弦的长恰等于实轴的长,,,故选:B3、C【解析】结合基本不等式求得所求的最小值.【详解】,,当且仅当时等号成立.故选:C4、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由为纯虚数,∴,解得:,则,故选:C5、B【解析】根据数据的平均数和方差的计算公式,准确计算,即可求解.【详解】由平均数的计算公式,可得,所以这4个数的方差为故选:B.6、A【解析】根据正态曲线的对称性即可求得答案.【详解】由题意,正态曲线的对称轴为,则与关于对称轴对称,于是.故选:A.7、B【解析】利用余弦定理结合椭圆的定义可求得、,即可得出结论.【详解】在椭圆中,,,,则,,可得,所以,,解得,此时点位于椭圆短轴的顶点.因此,满足条件的点的个数为.故选:B.8、D【解析】设椭圆长半轴长为a1,双曲线的半实轴长a2,焦距2c.根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根据余弦定理可得到,利用基本不等式可得结论【详解】如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,设|F1F2|=2c,∠F1PF2=,则:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化简得:a12+3a22=4c2,该式可变成:,∴≥2∴,故选D【点睛】本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义求焦点三角形三边长,考查利用基本不等式求最值问题,属于中档题9、A【解析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求出的最大值.【详解】作出可行域如图所示,由可知,此直线可用由直线平移得到,求的最大值,即直线的截距最大,当直线过直线的交点时取最大值,即故选:10、A【解析】由题方程化为椭圆的标准方程求出c,则椭圆的焦点坐标可求【详解】由题得方程可化为,所以所以焦点为故选:A.11、B【解析】利用正弦定理,以及大边对大角,结合正弦定理,即可求得.【详解】根据题意,由正弦定理,可得:,解得,故可得或,由,可得,故故选:B.12、C【解析】求得、、的值,由此可得出所求椭圆的方程.【详解】由题意可得,解得,,由于椭圆的对称轴是坐标轴,则该椭圆的方程为或.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、∪【解析】根据题意得出且与不共线,然后根据向量数量积的定义及向量共线的条件求出x的取值范围.【详解】∵与的夹角为钝角,且与不共线,即,且,解得,且,∴x的取值范围是∪.故答案为:∪.14、【解析】根据等比数列的通项公式可得,结合即可求出公比.【详解】设等比数列的公式为q,则,即,解得,又,所以,所以.故答案为:.15、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:16、【解析】根据当时,有,令,得到在上递增,再根据在上的偶函数,得到在上是奇函数,则在上递增,然后由,得到求解【详解】∵当时,有,令,∴,∴在上递增,又∵在上的偶函数∴,∴在上是奇函数∴在上递增,又∵,∴当时,,此时,0<x<1,当时,,此时,,∴成立的的取值范围是故答案为:﹒三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设数列的公差为,由,且,,,利用“”法求解;(2)由,利用裂项相消法求解.【小问1详解】解:,,设数列的公差为,则,,,由题知,整理得,解得,(舍去),,则.【小问2详解】,则=.18、(1)证明见解析;(2)存在,.【解析】(1)建立空间直角坐标系,求出平面的法向量和直线的单位向量,从而可证明线面平行.(2)令,,设,求出,结合已知条件可列出关于的方程,从而可求出的值.【详解】证明:过作于点,则,以为原点,,,所在的直线分别为,,轴建立如图所示的空间直角坐标系则,,,
,,,∵为的中点.∴.则,,,设平面的法向量为,则令,则,,∴.∴,即,又平面.∴平面解:令,,设,∴.∴,∴
.由知,平面的法向量为.∵直线与平面所成角的正弦值为,∴,化简得,即,∵,∴,故【点睛】本题考查了利用空间向量证明线面平行,考查了平面法向量的求解,属于中档题.19、(1)证明见解析(2)【解析】(1)依题意可得,再由,即可得到平面,从而建立空间直角坐标系,利用空间向量法证明即可;(2)利用空间向量法求出二面角的余弦值;【小问1详解】证明:因为平面,平面,平面,则,,又,因为,,平面,所以平面,故以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,1,,,1,,,0,,,所以,则,所以,故;【小问2详解】解:解:因为,设平面的法向量为,则,即,令,则,,故,因为底面,所以的一个法向量为,所以,故平面与平面夹角的余弦值为20、(1).(2)10.【解析】(1)借助于将转化为,进而得到数列为等比数列,通过首项和公比求得通项公式;(2)整理数列的通项公式,可知数列为等比数列,求得前n项和,代入不等式可求得n的最小值试题解析:(1)由已知,有,即从而又因为成等差数列,即所以,解得所以,数列是首项为2,公比为2的等比数列故(2)由(1)得.所以由,得,即因为,所以.于是,使成立的n的最小值为10考点:1.数列通项公式;2.等比数列求和21、(1);(2).【解析】(1)求出圆心坐标,可求得圆的半径,进而可得出圆的标准方程;(2)求得点到直线的距离,将直线的方程与椭圆的方程联立,求得的表达式,利用三角形的面积公式结合基本不等式可求得结果.【小问1详解】解:由题知,线段的中点为,直线的斜率,所以线段的中垂线为,即为,所以圆的圆心为轴与的交点,所以圆的半径,所以圆的标准方程为.【小问2详解】解:由题知:圆心到直线的距离,因为,所以圆心到直线的距离,所以到直线的距离,设点、,联立可得,,,则,所以,,所以,所以,所以当且仅当,即时等号成立,所以当时,取得最大值.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值22、(1);(2).【解析】(1)求,设的两根分别为,,由韦达定理可得:,,由题意知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 程序员技能提升考核含答案
- 设备安全工程师岗位知识考核题库含答案
- 部门督导精英面试题及答题攻略
- 考试题解析中广核热工水力专业知识
- 2025年城乡共享单车运营项目可行性研究报告
- 2025年旅游产业链整合与创新可行性研究报告
- 2025年新型城镇化建设及规划可行性研究报告
- 2025年生态恢复项目可行性研究报告
- 2026年上海政法学院单招职业倾向性测试题库及答案详解一套
- 2026年甘肃省兰州市单招职业适应性考试题库及完整答案详解1套
- 2025山东日照五莲县城市社区专职工作者招聘8人考试题库必考题
- 2025年大学医学影像(影像诊断学)试题及答案
- 部队手榴弹使用课件
- 私募基金内部人员交易管理制度模版
- 针对低层次学生的高考英语复习提分有效策略 高三英语复习备考讲座
- (完整)《走遍德国》配套练习答案
- 考研准考证模板word
- 周练习15- 牛津译林版八年级英语上册
- 电力电缆基础知识课件
- 代理记账申请表
- 模型五:数列中的存在、恒成立问题(解析版)
评论
0/150
提交评论