版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省桃花源一中高二数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,点E是棱PC的中点,作,交PB于F.下面结论正确的个数为()①∥平面EDB;②平面EFD;③直线DE与PA所成角为60°;④点B到平面PAC的距离为.A.1 B.2C.3 D.42.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.3.新型冠状病毒(2019-NCoV)因2019年武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名,为考察某种药物预防该疾病的效果,进行动物试验,得到如下列联表:患病未患病总计服用药104555未服药203050总计3075105下列说法正确的是()参考数据:,0.050.013.8416.635A.有95%的把握认为药物有效B.有95%的把握认为药物无效C.在犯错误的概率不超过0.05的前提下认为药物无效D.在犯错误的概率不超过0.01的前提下认为药物有效4.在中,角A,B,C的对边分别为a,b,c.若,,则的形状为()A.直角三角形 B.等边三角形C.等腰直角三角形 D.等腰或直角三角形5.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长的一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺6.已知随圆与双曲线相同的焦点,则椭圆和双曲线的离心,分别为()A. B.C. D.7.若函数有两个不同的极值点,则实数的取值范围是()A. B.C. D.8.函数的部分图像为()A. B.C. D.9.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则的值为()A.1225 B.1275C.1326 D.136210.若椭圆的弦恰好被点平分,则所在的直线方程为()A. B.C. D.11.已知椭圆的焦点分别为,,椭圆上一点P与焦点的距离等于6,则的面积为()A.24 B.36C.48 D.6012.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过点,的直线方程(一般式)为___________.14.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高二被抽取的人数为__.15.两个人射击,互相独立.已知甲射击一次中靶概率是0.6,乙射击一次中靶概率是0.3,现在两人各射击一次,中靶至少一次就算完成目标,则完成目标的概率为_____________16.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数.用一点(或一个小石子)代表1,两点(或两个小石子)代表2,三点(或三个小石子)代表3,…他们研究了各种平面数(包括三角形数、正方形数、长方形数、五边形数、六边形数等等)和立体数(包括立方数、棱锥数等等).如前四个四棱锥数为第n个四棱锥数为1+4+9+…+n2=.中国古代也有类似的研究,如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…若一个“三角垛”共有20层,则第6层有____个球,这个“三角垛”共有______个球三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点(1)求双曲线的方程;(2)若直线与双曲线恒有两个不同的交点和,且(其中为原点),求的取值范围18.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.19.(12分)在△ABC中,角A、B、C所对的边分别为a、b、c,角A、B、C的度数成等差数列,(1)若,求c的值;(2)求最大值20.(12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥面ABCD,E为PD的中点.(1)证明:PB∥面AEC;(2)设AP=1,AD=,三棱锥P-ABD的体积V=,求点A到平面PBC的距离.21.(12分)已知函数,曲线在处的切线方程为.(Ⅰ)求实数,的值;(Ⅱ)求在区间上的最值.22.(10分)已知抛物线C:y2=2px(p>0)的焦点与椭圆M:=1的右焦点重合.(1)求抛物线C的方程;(2)直线y=x+m与抛物线C交于A,B两点,O为坐标原点,当m为何值时,=0.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】①由题意连接交于,连接,则是中位线,证出,由线面平行的判定定理知∥平面;②由底面,得,再由证出平面,即得,再由是正方形证出平面,则有,再由条件证出平面;③根据边长证明△DEO是等边三角形即可;④根据等体积法即可求.【详解】①如图所示,连接交于点,连接底面是正方形,点是的中点在中,是中位线,而平面且平面,∥平面;故①正确;②如图所示,底面,且平面,,,是等腰直角三角形,又是斜边的中线,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正确;③如图所示,连接AC交BD与O,连接OE,由OE是三角形PAC中位线知OE∥PA,故∠DEO为异面直线PA和DE所成角或其补角,由②可知DE=,OD=,OE=,∴△DEO是等边三角形,∴∠DEO=60°,故③正确;④如图所示,设B到平面PAC的距离为d,由题可知PA=AC=PC=,故,由.故④正确.故正确的有:①②③④,正确的个数为4.故选:D.2、A【解析】根据命题与它的否定命题一真一假,写出该命题的否定命题,再求实数的取值范围【详解】解:命题“,”是假命题,则它的否定命题“,”是真命题,时,不等式为,显然成立;时,应满足,解得,所以实数的取值范围是故选:A3、A【解析】根据列联表计算,对照临界值即可得出结论【详解】根据列联表,计算,由临界值表可知,有95%的把握认为药物有效,A正确故选:A4、B【解析】直接利用正弦定理以及已知条件,求出、、的关系,即可判断三角形的形状【详解】解:在中,已知,,,分别为角,,的对边),由正弦定理可知:,所以,解得,所以为等边三角形故选:【点睛】本题考查三角形的形状的判断,正弦定理的应用,考查计算能力,属于基础题5、A【解析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A6、B【解析】设公共焦点为,推导出,可得出,进而可求得、的值.【详解】设公共焦点为,则,则,即,故,即,,故选:B7、D【解析】计算,然后等价于在(0,+∞)由2个不同的实数根,然后计算即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查根据函数极值点个数求参,考查计算能力以及思维转变能力,属基础题.8、D【解析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D9、B【解析】观察前4项可得,从而可求得结果【详解】由题意可得,……,观察规律可得,所以,故选:B10、D【解析】判断点M与椭圆的位置关系,再借助点差法求出直线AB的斜率即可计算作答.【详解】显然点椭圆内,设点,依题意,,两式相减得:,而弦恰好被点平分,即,则直线AB的斜率,直线AB:,即,所以所在的直线方程为.故选:D11、A【解析】由题意可得出与、、的值,在根据椭圆定义得的值,即可得到是直角三角形,即可求出的面积.【详解】由题意知,.根据椭圆定义可知,是直角三角形,.故选:A.12、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用两点式方程可求直线方程.【详解】∵直线过点,,∴,∴,化简得.故答案为:.14、【解析】利用分层抽样可求得的值,再利用分层抽样可求得高二被抽取的人数.【详解】高一年级抽取的人数为:人,则,则高二被抽取的人数,故答案为:.15、72【解析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,若甲、乙两个各射击1次,至少有一人命中目标的概率为.故答案为:16、①.21②.1540【解析】根据题中给出的图形,结合题意找到各层球的数列与层数的关系,得到=,由此可求的值,以及前20层的总球数【详解】由题意可知,,故==,所==21,所以S20=a1+a2+a3+a4+⋯⋯+a20=(12+22+32+⋯⋯+202)+(1+2+3+⋯⋯+20)=×+×=1540故答案为:21;1540三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)求出椭圆的焦点和顶点,即得双曲线的顶点和焦点,从而易求得标准方程;(2)将代入,得由直线与双曲线交于不同的两点,得的取值范围,设,由韦达定理得则代入可求得的范围【详解】(1)设双曲线的方程为,则,再由,得故的方程为(2)将代入,得由直线与双曲线交于不同的两点,得①设则又,得,,即,解得②由①②得<k2<1,故的取值范围【点睛】本题考查双曲线的标准方程,考查直线与双曲线相交中的范围问题.应注意:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围(4)利用已知的不等关系构造不等式,从而求出参数的取值范围(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围18、(1)(2)(3)【解析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.19、(1);(2)【解析】(1)利用等差数列以及三角形内角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及两角和与差的三角函数,结合三角函数的最值求解即可【详解】(1)由角A、B、C的度数成等差数列,得2B=A+C又,∴由正弦定理,得,即由余弦定理,得,即,解得(2)由正弦定理,得,∴,∴由,得所以当时,即时,20、(1)证明见解析;(2).【解析】(1)设BD交AC于点O,连结EO,根据三角形中位线证明BP∥EO即可;(2)根据三棱锥P-ABD的体积求出AB长度,过A作AH⊥BP于H,可证AH即为要求的距离,根据直角三角形等面积法即可求AH长度.【小问1详解】设BD交AC于点O,连结EO.∵ABCD为矩形,∴O为BD的中点.又E为PD的中点,∴EO∥PB,又EO平面AEC,PB平面AEC,∴PB∥平面AEC.【小问2详解】,又V=,可得AB=2.在面PAB内过点A作交于.由题设易知平面,∴故平面,由等面积法得:,∴点A到平面的距离为.21、(Ⅰ)最大值为,最小值为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村室内装修合同(标准版)
- 2026年牡蛎养殖合同
- 2026年教学医院合作合同
- 2025年水资源保护与修复项目可行性研究报告
- 2025年新兴市场投资策略研究可行性研究报告
- 2025年城市智能路灯管理系统项目可行性研究报告
- 物料订购合同范本
- 主播保密协议书
- 2025年绿色环保证书贸易项目可行性研究报告
- 游戏技术美术面试题及答案
- 2025年安全培训计划表
- 2025年沈阳华晨专用车有限公司公开招聘笔试历年参考题库附带答案详解
- 第五单元国乐飘香(一)《二泉映月》课件人音版(简谱)初中音乐八年级上册
- 【MOOC】理解马克思-南京大学 中国大学慕课MOOC答案
- 机场运行职业规划书
- 注塑成型工艺流程
- JGT266-2011 泡沫混凝土标准规范
- 银行物业服务投标方案(技术方案)
- 数控刀具的选择
- 病理生理学(南华大学)智慧树知到答案章节测试2023年
- 国家公园 (中国旅游地理课件)
评论
0/150
提交评论