版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市主城四区2026届数学高二上期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.2.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.3.下列问题中是古典概型的是A.种下一粒杨树种子,求其能长成大树的概率B.掷一颗质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一数,求这个数大于1.5概率D.同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率4.设命题甲:,命题乙:直线与直线平行,则()A.甲是乙的充分不必要条件 B.甲是乙的必要不充分条件C.甲是乙的充要条件 D.甲是乙的既不充分也不必要条件5.年底以来,我国多次在重要场合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正负抵消,实现二氧化碳“零排放”.二氧化碳的分子是由一个碳原子和两个氧原子构成的,其结构式为.已知氧有、、三种天然同位素,碳有、、三种天然同位素,则由上述同位素可构成的不同二氧化碳分子共有()A.种 B.种C.种 D.种6.已知锐角的内角A,B,C的对边分别为a,b,c,若向量,,,则的最小值为()A. B.C. D.7.下列关于函数及其图象的说法正确的是()A.B.最小正周期为C.函数图象的对称中心为点D.函数图象的对称轴方程为8.展开式的第项为()A. B.C. D.9.已知双曲线,过原点作一条倾斜角为的直线分别交双曲线左、右两支于、两点,以线段为直径的圆过右焦点,则双曲线的离心率为().A. B.C. D.10.已知直线l的方向向量,平面α的一个法向量为,则直线l与平面α的位置关系是()A.平行 B.垂直C.在平面内 D.平行或在平面内11.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”的关系是()A.既不互斥也不对立 B.互斥又对立C.互斥但不对立 D.对立12.直线与圆的位置关系是()A.相交 B.相切C.相离 D.都有可能二、填空题:本题共4小题,每小题5分,共20分。13.如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________(写出所有正确命题的编号).①当时,S为四边形;②当时,S为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.14.已知直线过抛物线的焦点,且与的对称轴垂直,与交于,两点,,为的准线上一点,则的面积为________15.已知抛物线的焦点坐标为,则该抛物线上一点到焦点的距离的取值范围是___________.16.已知数列前n项和为,且.(1)证明:是等比数列,并求的通项公式;(2)在①;②;③这三个条件中任选一个补充在下面横线上,并加以解答.已知数列满足___________,求的前n项和.注:如果选择多个方案分别解答,按第一个方案解答计分.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,圆C:,l:.(1)若直线过点M,且被圆C截得的弦长为,求该直线的方程;(2)设P为已知直线l上的动点,过点P向圆C作一条切线,切点为Q,求的最小值.18.(12分)在①,②,③这三个条件中任选一个,补充在下面横线上,并解答.在中,内角,,的对边分别为,,,且___________.(1)求角的大小;(2)已知,,点在边上,且,求线段的长.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)如图,已知椭圆:经过点,离心率(1)求椭圆的标准方程;(2)设是经过右焦点的任一弦(不经过点),直线与直线:相交于点,记,,的斜率分别为,,,求证:,,成等差数列20.(12分)红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表Ⅰ中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合表Ⅰ温度x/℃20222527293135产卵数y/个711212465114325(1)请借助表Ⅱ中的数据,求出回归模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)类似的,可以得到回归模型②的方程为,试求两种模型下温度为时的残差;(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合(2)说明哪个模型的拟合效果更好参考数据:.附:回归方程中,相关指数.21.(12分)函数.(1)当时,解不等式;(2)若不等式对任意恒成立,求实数a的取值范围.22.(10分)已知圆C经过点,,且它的圆心C在直线上.(1)求圆C的方程;(2)过点作圆C的两条切线,切点分别为M,N,求三角形PMN的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用对立事件的概率公式可求得所求事件的概率.【详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.2、A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.3、D【解析】A、B两项中的基本事件的发生不是等可能的;C项中基本事件的个数是无限多个;D项中基本事件的发生是等可能的,且是有限个.故选D【考点】古典概型的判断4、A【解析】根据充分条件和必要条件的定义,结合两直线平行的性质进行求解即可.【详解】当时,直线的方程为,直线方程为,此时,直线与直线平行,即甲乙;直线和直线平行,则,解得或,即乙甲;则甲是乙的充分不必要条件.故选:.5、C【解析】分两种情况讨论:两个氧原子相同、两个氧原子不同,分别计算出两种情况下二氧化碳分子的个数,利用分类加法计数原理可得结果.【详解】分以下两种情况讨论:若两个氧原子相同,此时二氧化碳分子共有种;若两个氧原子不同,此时二氧化碳分子共有种.由分类加法计数原理可知,由上述同位素可构成的不同二氧化碳分子共有种.故选:C.6、C【解析】由,得到,根据正弦、余弦定理定理化简得到,化简得到,再结合基本不等式,即可求解.【详解】由题意,向量,,因为,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因为,所以,由,所以,因为是锐角三角形,且,可得,解得,所以,所以,当且仅当,即时等号成立,故的最小值为.故选:C7、D【解析】化简,利用正弦型函数的性质,依次判断,即可【详解】∵∴,A选项错误;的最小正周期为,B选项错误;令,则,故函数图象的对称中心为点,C选项错误;令,则,所以函数图象的对称轴方程为,D选项正确故选:D8、B【解析】由展开式的通项公式求解即可【详解】因为,所以展开式的第项为,故选:B9、A【解析】设双曲线的左焦点为,连接、,求得、,利用双曲线的定义可得出关于、的等式,即可求得双曲线的离心率.【详解】设双曲线的左焦点为,连接、,如下图所示:由题意可知,点为的中点,也为的中点,且,则四边形为矩形,故,由已知可知,由直角三角形的性质可得,故为等边三角形,故,所以,,由双曲线的定义可得,所以,.故选:A.10、D【解析】根据题意,结合线面位置关系的向量判断方法,即可求解.【详解】根据题意,因为,所以,所以直线l与平面α的位置关系是平行或在平面内故选:D11、C【解析】根据互斥事件、对立事件的定义可得答案.【详解】把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”不能同时发生,但能同时不发生,所以它们的关系是互斥但不对立.故选:C.12、A【解析】求出圆心到直线的距离,然后与圆的半径进行大小比较即可求解.【详解】解:圆的圆心,,因为圆心到直线的距离,所以直线与圆的位置关系是相交,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①②③⑤【解析】①由如图当点向移动时,满足,只需在上取点满足,即可得截面为四边形,如图所示,是四边形,故①正确;②当时,即为中点,此时可得PQ∥AD,AP=QD==,故可得截面APQD为等腰梯形,等腰梯形,故②正确;③当时,如图,延长至,使,连接交于,连接交于,连接,可证,由∽,可得,故可得,故③正确;④由③可知当时,只需点上移即可,此时的截面形状仍然如图所示的,如图是五边形,故④不正确;⑤当时,与重合,取的中点,连接,可证,且,可知截面为为菱形,故其面积为,如图是菱形,面积为,故⑤正确,故答案为①②③⑤考点:正方体的性质.14、【解析】先设出抛物线方程,写出准线方程和焦点坐标,利用得到抛物线方程,再利用三角形的面积公式进行求解.【详解】设抛物线的方程为,则焦点为,准线方程为,由题意,得,,,所以,解得,所以.故答案为:.15、【解析】根据题意,求得,得到焦点坐标,结合抛物线的定义,得到,根据,求得,即可求解.【详解】由抛物线的焦点坐标为,可得,解得,设抛物线上的任意一点为,焦点为,由抛物线的定义可得,因为,所以,所以抛物线上一点到焦点的距离的取值范围是.故答案为:.16、(1)证明见解析,;(2)答案见解析.【解析】(1)利用得出的递推关系,变形后可证明是等比数列,由等比数列通项公式得,然后再除以得到新数列是等差数列,从而可求得;(2)选①,直接求出,用错位相减法求和;选②,求出,用分组(并项)求和法求和;选③,求出,用裂项相消法求和【详解】解:(1)当时,因为,所以,两式相减得,.所以.当时,因为,所以,又,故,于是,所以是以4为首项2为公比的等比数列.所以,两边除以得,.又,所以是以2为首项1为公差的等差数列.所以,即.(2)若选①:,即.因为,所以.两式相减得,所以.若选②:,即.所以.若选③:,即.所以.【点睛】本题考查求等差数列、等比数列的通项公式,错位相减法求和.数列求和的常用方法:设数列是等差数列,是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的前项和应用错位相减法;(3)裂项相消法;数列(为常数,)的前项和用裂项相消法;(4)分组(并项)求和法:数列用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足(为常数)的数列,需用倒序相加法求和三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)求出圆的圆心到直线的距离,再利用垂径定理计算列方程计算;(2)由题意可知当最小时,连线与已知直线垂直,求出,再利用计算即可.【小问1详解】由题意可知圆的圆心到直线的距离为①当直线斜率不存在时,圆的圆心到直线距离为1,满足题意;②当直线斜率存在时,设过的直线方程为:,即由点到直线距离公式列方程得:解得综上,过的直线方程为或.【小问2详解】由题意可知当最小时,连线与已知直线垂直,由勾股定理知:,所以的最小值为.18、(1)(2)【解析】(1)若选①,则根据正弦定理,边化角,结合二倍角公式,求得,可得答案;若选②,则根据余弦定理和三角形面积公式,将化简,求得,可得答案;若选③,则切化弦,化简可得到的值,求得答案;(2)由余弦定理求出,进而求得,设,,在中用余弦定理列出方程,求得答案.【小问1详解】若选①,则根据正弦定理可得:,由于,,故,则;若选②,则,即,则,而,故;若选③,则,即,则,而,故;【小问2详解】如图示:,故,故,在中,设,则,则,即,解得,或(舍去)故.19、(1);(2)证明见解析【解析】(1)由点在椭圆上得到,再由,得到,联立方程组,求得的值,即可得到椭圆的标准方程;(2)由(1)得椭圆右焦点坐标,设直线的方程为,联立方程组,求得,及,结合斜率公式得到,结合,求得,即可得到,,成等差数列【详解】(1)由题意,点在椭圆上得,可得①又由,所以②由①②联立且,可得,,,故椭圆的标准方程为(2)由(1)知,椭圆的方程为,可得椭圆右焦点坐标,显然直线斜率存在,设的斜率为,则直线的方程为,联立方程组,整理得,设,,则有,,由直线的方程为,令,可得,即,从而,,,又因为共线,则有,即有,所以,将,代入得,又由,所以,即,,成等差数列【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力20、(1)(或)(2)模型①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医类人文考试及答案
- 游戏策划师招聘考试与面试要点分析
- 智能硬件研发与应用专家面试题集
- 2025年文创产品研发与市场推广项目可行性研究报告
- 2025年信息技术在教育中的应用可行性研究报告
- 2025年水陆联运交通枢纽建设可行性研究报告
- 2025年新型互联网媒体平台建设项目可行性研究报告
- 2026年山西省晋中市单招职业倾向性测试题库带答案详解
- 2026年内蒙古机电职业技术学院单招职业适应性测试题库带答案详解
- 2026年平顶山文化艺术职业学院单招职业技能测试题库参考答案详解
- KTV行业营销工作计划
- 中华人民共和国价格法培训2024
- 220kV变电站电气设备常规交接试验方案
- 兵团精神课件教学课件
- 湖州师范学院《电动力学》2023-2024学年期末试卷
- 教师资格认定申请表
- 中山大学二外法语考研真题及详解(2012~2014)【圣才出品】
- 铺路钢板租赁合同路基箱钢板租赁2024年
- 《直播运营实务》中职全套教学课件
- 隧道内栈桥设计计算书
- 2022年下半年教师资格证考试《高中生物》题(题目及答案解析)
评论
0/150
提交评论