版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
兰州市七年级下册数学期末压轴难题试题及答案解答一、选择题1.的平方根是()A.4 B. C.2 D.2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是()A. B. C. D.3.若点在第二象限,则点在第()象限A.一 B.二 C.三 D.四4.下列命题是假命题的是()A.两个锐角的和是钝角B.两条直线相交成的角是直角,则两直线垂直C.两点确定一条直线D.三角形中至少有两个锐角5.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于()A.35° B.45° C.50° D.55°6.下列说法中正确的是()①1的平方根是1;②5是25的算术平方根;③(﹣4)2的平方根是﹣4;④(﹣4)3的立方根是﹣4;⑤0.01是0.1的一个平方根.A.①④ B.②④ C.②③ D.②⑤7.如图,中,,,将边绕点按逆时针旋转一周回到原来位置,在旋转过程中,当时,求边旋转的角度,嘉嘉求出的答案是50°,琪琪求出的答案是230°,则下列说法正确的是()A.嘉嘉的结果正确 B.琪琪的结果正确C.两个人的结果合在一起才正确 D.两个人的结果合在一起也不正确8.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,…,按这样的运动规律,经过第2021次运动后,动点的坐标是()A. B. C. D.二、填空题9.已知实数x,y满足+(y+1)2=0,则x-y的立方根是_____.10.已知点的坐标是,且点关于轴对称的点的坐标是,则__________.11.如图,是的两条角平分线,,则的度数为_________.12.将直角三角板与两边平行的纸条如图放置,若,则__________.13.图,直线,直线l与直线AB,CD相交于点E、F,点P是射线EA上的一个动点(不包括端点E),将沿PF折叠,使顶点E落在点Q处.若∠PEF=75°,2∠CFQ=∠PFC,则________.14.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____15.若点P(2-m,m+1)在x轴上,则P点坐标为_____.16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________.三、解答题17.计算下列各式的值:(1)(2)18.求下列各式中的x值:(1)25x2-64=0(2)x3-3=19.完成下面的证明:已知:如图,,和相交于点,平分,和相交于点,.求证:.证明:(已知),(______________),________(两直线平行,同位角相等).又(已知),______(________)(等量代换).平分(已知),_______(角平分线的定义).(_________).20.如图,,,.将向右平移个单位长度,然后再向上平移个单位长度,可以得到.(1)画出平移后的,的顶点的坐标为;顶点的坐标为.(2)求的面积.(3)已知点在轴上,以,,为顶点的三角形面积为,则点的坐标为.21.阅读理解.∵<<,即2<<3.∴1<﹣1<2∴﹣1的整数部分为1,∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)2的平方根,提示:()2=17.二十二、解答题22.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______;(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”)(3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?二十三、解答题23.已知,定点,分别在直线,上,在平行线,之间有一动点.(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,①若,则__________°.②猜想与的数量关系.(直接写出结论)24.已知:直线∥,A为直线上的一个定点,过点A的直线交于点B,点C在线段BA的延长线上.D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在上,且在点B的左侧.(1)如图1,若∠BAD=25°,∠AED=50°,直接写出ABM的度数;(2)射线AF为∠CAD的角平分线.①如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明;②当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数.25.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、.(1)当点与点、在一直线上时,,,则_____.(2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论.26.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由.【参考答案】一、选择题1.D解析:D【分析】先算出的值,再根据平方根的定义“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答.【详解】解:,∵,∴4的平方根是,故选D.【点睛】本题考查了平方根,解题的关键是要先算出的值和掌握平方根的定义,并学会区分平方根和算术平方根.2.C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是解析:C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A.是旋转180°后图形,故选项A不合题意;B.是轴对称图形,故选项B不合题意;C.选项的图案可以通过平移得到.故选项C符合题意;D.是轴对称图形,故选项D不符合题意.故选:C.【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键.3.C【分析】应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限.【详解】解:∵点在第二象限,∴1+a<0,1-b>0;∴a<-1,b-1<0,即点在第三象限.故选:C.【点睛】解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4.A【分析】选出假命题只要举出反例即可,两个锐角的和是钝角,反例:两个锐角分别是有20°、30°,和是50°,还是锐角,因此是假命题.【详解】A.两个锐角的和是钝角是假命题,如两个锐角分别是20°、30°,
而它们的和是50°,还是锐角,不是钝角;B.两条直线相交成的角是直角则两直线垂直是真命题;C.两点确定一条直线是真命题;D.三角形中至少有两个锐角是真命题.故选:
A【点睛】本题通过判断真假命题来考查了解各类知识的概念和意义,熟练掌握各类知识是解题的关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C=∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.B【分析】根据平方根,算术平方根,立方根的概念进行分析,从而作出判断.【详解】解:1的平方根是±1,故说法①错误;5是25的算术平方根,故说法②正确;(-4)2的平方根是±4,故说法③错误;(-4)3的立方根是-4,故说法④正确;0.1是0.01的一个平方根,故说法⑤错误;综上,②④正确,故选:B.【点睛】本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键.7.C【分析】分两种情况进行讨论,根据平行线的性质,周角的性质,三角形内角和的性质求解即可.【详解】解:当点在点的右边时,如下图:为旋转的角度,∵∴,即旋转角为当点在点的左边时,如下图:∵∴根据三角形内角和可得旋转的角度为综上所述,旋转角度为或故选C【点睛】此题考查了平行线的性质,三角形内角和的性质,周角的性质,熟练掌握相关基本性质是解题的关键.8.C【分析】根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标.【详解】解:设第n次运动后的点记为An,根据变化规律可知,,......,∴,n为正整数,解析:C【分析】根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标.【详解】解:设第n次运动后的点记为An,根据变化规律可知,,......,∴,n为正整数,取,则,∴,故选:C.【点睛】本题主要考查点的坐标的变化规律,关键是要发现第1、5、9、......的位置上的点的变化规律,第2021个点刚好满足此规律.二、填空题9.【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是.【点睛】本题考查的是解析:【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是.【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.10.-31【分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数.【详解】∵已知点的坐标是,且点关于轴对称的点的坐标是,∴m=−3;n=1,故答案为−3;1解析:-31【分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数.【详解】∵已知点的坐标是,且点关于轴对称的点的坐标是,∴m=−3;n=1,故答案为−3;1.【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.140°.【分析】△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【详解析:140°.【分析】△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【详解】△ABC中,∠ABC+∠ACB=180°−∠A=180°−100°=80°,∵BO、CO是∠ABC,∠ACB的两条角平分线.∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°.故填:140°.【点睛】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.12.36【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解.【详解】∵,∴,∵,故答案为:.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.解析:36【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解.【详解】∵,∴,∵,故答案为:.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.13.或【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+解析:或【分析】分两种情形:①当点Q在平行线AB,CD之间时.②当点Q在CD下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+∠CFE=180°设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.②当点Q在CD下方时,如图2设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=x,∴75°+x+x=180°,解得x=63°,∴∠EFP=63°.故答案为:或【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.14.-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.15.(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.【详解】∵点P(2-m,m+1)在x轴上,∴m+1=0,解得:m=-1,∴2-m=3,∴P点坐标解析:(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.【详解】∵点P(2-m,m+1)在x轴上,∴m+1=0,解得:m=-1,∴2-m=3,∴P点坐标为(3,0),故答案为:(3,0)【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.16.(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4解析:(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…,【详解】解:由题意,粒子运动到点(3,0)时经过了15秒,设粒子运动到A1,A2,…,An时所用的间分别为a1,a2,…,an,则a1=2,a2=6,a3=12,a4=20,…,a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,an-an-1=2n,各式相加得:an-a1=2(2+3+4+…+n)=n2+n-2,∴an=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,An中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动34秒到达点(10,44),即运动了2014秒.所求点应为(10,44).故答案为:(10,44).故答案为:15,(10,44).【点睛】本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键.18.(1)x=±;(2)x=.【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=±;(2)x=.【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得.【详解】解:(1)∵25x2-64=0,∴25x2=64,则x2=,∴x=±;(2)∵x3-3=,∴x3=,则x=.故答案为:(1)x=;(2)x=.【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义.19.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.【详解】证明:(已知),(内解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【分析】由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.【详解】证明:(已知),(内错角相等,两直线平行),(两直线平行,同位角相等).又(已知),(两直线平行,同位角相等),(等量代换).平分(已知),(角平分线的定义).(等量代换).故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.【点睛】本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”.20.(1)见解析,,;(2)5;(3)或【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P点解析:(1)见解析,,;(2)5;(3)或【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P点得坐标为,因为以,,P为顶点得三角形得面积为,所以,求解即可.【详解】解:(1)如图,为所作.(0,3),(4,0);(2)计算的面积.(3)设P点得坐标为(t,0),因为以,,为顶点得三角形得面积为,所以,解得或,即点坐标为(3,0)或(5,0).【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)a=1,b=﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1)∴,∴4<5,∴1<﹣3<2,∴解析:(1)a=1,b=﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1)∴,∴4<5,∴1<﹣3<2,∴a=1,b=﹣4;(2)(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±=±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<<5是解题关键.二十二、解答题22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm,∴小正方形的面积为1cm2,∴两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2cm2,设大正方形的边长为xcm,∴,∴∴大正方形的边长为cm;(2)设圆的半径为r,∴由题意得,∴,∴,设正方形的边长为a∵,∴,∴,∴故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为,∴设长方形纸片的长为,宽为,则,整理得:,∴,∴,∴,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:;(2)当点在的右侧时,,,满足数量关系为:;(3)①若当点在的左侧时,;当点在的右侧时,可求得;②结合①可得,由,得出;可得,由,得出.【详解】解:(1)如图1,过点作,,,,,,;(2)如图2,当点在的右侧时,,,满足数量关系为:;过点作,,,,,,;(3)①如图3,若当点在的左侧时,,,,分别平分和,,,;如图4,当点在的右侧时,,,;故答案为:或30;②由①可知:,;,.综合以上可得与的数量关系为:或.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.24.(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,解析:(1);(2)①,见解析;②或【分析】(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,运用角的等量代换换算即可.【详解】.解:(1)设在上有一点N在点A的右侧,如图所示:∵∴,∴∴(2)①.证明:设,.∴.∵为的角平分线,∴.∵,∴.∴.∴.②当点在点右侧时,如图:由①得:又∵∴∵∴当点在点左侧,在右侧时,如图:∵为的角平分线∴∵∴,∵∴∴∵∴又∵∴∴当点和在点左侧时,设在上有一点在点的右侧如图:此时仍有,∴∴综合所述:或【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.25.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可;(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.【详解】(1)当点与点、在一直线上时,作图如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案为:120°;(2)满足关系式为∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.证明:根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时,过点P作PQ∥AB,如下图,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②当点P在AB上方时,如下图所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③当点P在CD下方时,∵AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年本地配送合同
- 等保测评技术服务合同
- 2025年水利设施智能管理系统可行性研究报告
- 2025年新型物流仓储设施建设可行性研究报告
- 2025年数字乡村发展与应用项目可行性研究报告
- 港口运输合同范本
- 田地退租合同范本
- 产后消费协议书
- 高考全国二卷英语题库题库(含答案)
- 人力资源培训师课程设计能力测试题含答案
- 2025年广东省第一次普通高中学业水平合格性考试(春季高考)英语试题(含答案详解)
- 2026年合同全生命周期管理培训课件与风险防控手册
- 特殊儿童沟通技巧培训
- 理赔管理经验分享
- 中国马克思主义与当代2024版教材课后思考题答案
- 2026年日历表(每月一页、可编辑、可备注)
- DB44∕T 1297-2025 聚乙烯单位产品能源消耗限额
- 2025年历城语文面试题目及答案
- 装修合同三方协议范本
- 讲给老年人听的助听器
- 大清包劳务合同样本及条款解读
评论
0/150
提交评论