版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁师大学附中2026届高二上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆:,是直线的一点,过点作圆的切线,切点为,,则的最小值为()A. B.C. D.2.已知直线与平行,则系数()A. B.C. D.3.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;③回归直线就是散点图中经过样本数据点最多的那条直线;④如果两个变量的线性相关程度越高,则线性相关系数就越接近于;其中错误说法的个数是()A. B.C. D.4.已知圆与直线,则圆上到直线的距离为1的点的个数是()A.1 B.2C.3 D.45.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元6.直线在轴上的截距为,在轴上的截距为,则有()A., B.,C., D.,7.直线的倾斜角为A. B.C. D.8.若数列满足,,则数列的通项公式为()A. B.C. D.9.若直线:与:互相平行,则a的值是()A. B.2C.或2 D.3或10.设、是两条不同的直线,、、是三个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则11.已知数列满足,,,前项和()A. B.C. D.12.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点P是抛物线上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________14.已知圆:,圆:,则圆与圆的位置关系是______15.已知函数是定义域上的单调递增函数,是的导数且为定义域上的单调递减函数,请写出一个满足条件的函数的解析式___________16.已知函数,则函数在区间上的平均变化率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,为坐标原点,曲线上点都在轴及其右侧,且曲线上的任一点到轴的距离比它到圆的圆心的距离小1(1)求曲线的方程;(2)已知过点的直线交曲线于点,若,求面积18.(12分)设,分别是椭圆:的左、右焦点,的离心率为,点是上一点.(1)求椭圆的方程;(2)过点的直线交椭圆E于A,B两点,且,求直线的方程.19.(12分)如图,在四棱锥中,底面为菱形,,底面,,是的中点.(1)求证:平面;(2)求证:平面平面;(3)设点是平面上任意一点,直接写出线段长度最小值.(不需证明)20.(12分)如图,四边形为矩形,,且平面平面.(1)若,分别是,的中点,求证:平面;(2)若是等边三角形,求平面与平面夹角的余弦值.21.(12分)已知椭圆的焦距为,点在椭圆上.过点的直线l交椭圆于A,B两点.(1)求该椭圆的方程;(2)若点P为直线上的动点,记直线PA,PM,PB的斜率分别为,,.求证:,,成等差数列.22.(10分)已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(1)求椭圆的标准方程;(2)已知直线与椭圆交于、两点,、是椭圆上位于直线两侧的动点,且直线的斜率为,求四边形面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,为四边形的面积的2倍,即,然后利用切线长定理,将问题转化为圆心到直线的距离求解.【详解】圆:的圆心为,半径,设四边形的面积为,由题设及圆的切线性质得,,∵,∴,圆心到直线的距离为,∴的最小值为,则的最小值为,故选:A2、B【解析】由直线的平行关系可得,解之可得【详解】解:直线与直线平行,,解得故选:3、C【解析】根据统计的概念逐一判断即可.【详解】对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;对于②从统计量中得知有的把握认为吸烟与患肺病有关系,是指有的可能性使得推断出现错误;故②正确;对于③,线性回归方程必过样本中心点,回归直线不一定就是散点图中经过样本数据点最多的那条直线,也可能不过任何一个点;③不正确;对于④,如果两个变量的线性相关程度越高,则线性相关系数就越接近于,不正确,应为相关系数的绝对值就越接近于;综上,其中错误的个数是;故选:C.4、B【解析】根据圆心到直线的距离即可判断.【详解】由得,则圆的圆心为,半径,由,则圆心到直线的距离,∵,∴在圆上到直线距离为1的点有两个.故选:B.5、B【解析】,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5考点:线性回归方程6、B【解析】将直线方程的一般形式化为截距式,由此可得其在x轴和y轴上的截距.【详解】直线方程化成截距式为,所以,故选:B.7、B【解析】分析出直线与轴垂直,据此可得出该直线的倾斜角.【详解】由题意可知,直线与轴垂直,该直线的倾斜角为.故选:B.【点睛】本题考查直线的倾斜角,关键是掌握直线倾斜角的定义,属于基础题8、B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B9、A【解析】根据直线:与:互相平行,由求解.【详解】因为直线:与:互相平行,所以,即,解得或,当时,直线:,:,互相平行;当时,直线:,:,重合;所以,故选:A10、B【解析】根据线线、线面、面面的位置关系,对选项进行逐一判断即可.【详解】选项A.一条直线垂直于一平面内的,两条相交直线,则改直线与平面垂直则由,不能得出,故选项A不正确.选项B.,则正确,故选项B正确.选项C若,则与可能相交,可能异面,也可能平行,故选项C不正确.选项D.若,则与可能相交,可能平行,故选项D不正确.故选:B11、C【解析】根据,利用对数运算得到,再利用等比数列的前n项和公式求解.【详解】解:因为,所以,则,所以数列是以为首项,为公比的等比数列,所以,故选:C12、C【解析】利用导函数的图象,判断导函数的符号,得到函数的单调性以及函数的极值点,然后判断选项即可【详解】解:由题意可知:和时,,函数是增函数,时,,函数是减函数;是函数的极大值点,是函数的极小值点;所以函数的图象只能是故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最小,.故答案为:.14、相交【解析】把两个圆的方程化为标准方程,分别找出两圆的圆心坐标和半径,利用两点间的距离公式求出两圆心的距离,与半径和与差的关系比较即可知两圆位置关系.【详解】化为,化为,则两圆圆心分别为:,,半径分别为:,圆心距为,,所以两圆相交.故答案为:相交.15、(答案不唯一)【解析】由题意可得0,结合在定义域上为减函数可取.【详解】因为在定义域为单调增函数所以在定义域上0,又因为在定义域上为减函数,且大于等于0.所以可取(),(),满足条件所以可为().故答案为:(答案不唯一).16、3【解析】根据平均变化率的定义即可计算.【详解】设,因,,所以.故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意直接列或根据抛物线的定义求轨迹方程(2)待定系数法设直线方程,联立直线与抛物线方程,根据抛物线的定义,利用韦达定理解出直线方程,再求面积【小问1详解】解法1:配方法可得圆的方程为,即圆的圆心为,设的坐标为,由已知可得,化简得,曲线的方程为解法2:配方可得圆的方程为,即圆的圆心为,由题意可得上任意一点到直线的距离等于该点到圆心的距离,由抛物线的定义可得知,点的轨迹为以点为焦点的抛物线,所以曲线的方程为【小问2详解】抛物线的焦点为,准线方程为,由,可得的斜率存在,设为,,过的直线的方程为,与抛物线的方程联立,可得,设,的横坐标分别为,,可得,,由抛物线的定义可得,解得,即直线的方程为,可得到直线的距离为,,所以的面积为18、(1)(2)或【解析】(1)按照所给的条件带入椭圆方程以及e的定义即可;(2)联立直线与椭圆方程,表达出,解方程即可.【小问1详解】由题意知,,且,解得,,所以椭圆的方程为.【小问2详解】由题意知,直线的斜率存在且不为0,故可设直线的方程为,设,.由得,则……①,……②,因为,所以,,由可得……③由①②③可得,解得,,所以直线的方程为或,故答案为:,或.19、(1)证明见解析(2)证明见解析(3)【解析】(1)设,连结,根据中位线定理即可证,再根据线面平行的判定定理,即可证明结果;(2)由菱形的性质可知,可证,又底面,可得,再根据面面垂直的判定定理,即可证明结果;(3)根据等体积法,即,经过计算直接写出结果即可.【小问1详解】证明:设,连结.因为底面为菱形,所以为的中点,又因为E是PC的中点,所以.又因为平面,平面,所以平面.【小问2详解】证明:因为底面为菱形,所以.因为底面,所以.又因为,所以平面.又因为平面,所以平面平面.【小问3详解】解:线段长度的最小值为.20、(1)证明见解析(2)【解析】(1)通过构造平行四边形,在平面中找到即可证明(2)建立直角坐标系,通过两个面的法向量夹角的余弦值求出面面夹角的余弦值【小问1详解】证明:设为的中点,连接,,因为,分别为,的中点.所以且,又,为的中点,所以,且,所以四边形是平行四边形,所以,又平面,平面,所以平面;【小问2详解】取的中点,连接,,则,∵平面平面,平面平面,∴平面,∵是等边三角形,为中点,∴,分别以,,所在直线为,,轴建立如图所示的空间直角坐标系,则,,,,,,,,.设为平面的一个法向量,则有即取可取,设为平面的一个法向量,则有即可取,所以,设平面与平面的夹角为,则,∴,即平面与平面夹角的余弦值为.21、(1);(2)证明见解析.【解析】(1)根据焦点坐标及椭圆上的点,利用椭圆的定义求出a,再由关系求b,即可得解;(2)分直线斜率存在与不存在两种情况讨论,利用斜率公式计算出,根据等差中项计算,即可证明成等差数列.【小问1详解】∵椭圆的焦距,椭圆的两焦点坐标分别为,又点在椭圆上,,即.该椭圆方程为.【小问2详解】设.当直线l的斜率为0时,其方程为,代入,可得.不妨取,则,成等差数列.当直线l的斜率不为0时,设其方程为,由,消去x得.即,成等差数列,综上可得,,成等差数列.22、(1)(2)【解析】(1)根据离心率的定义以及椭圆与抛物线焦点的关系,可以求出椭圆方程;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025下半年贵州遵义市市直事业单位选调56人考试笔试备考题库及答案解析
- 2025恒丰银行武汉分行社会招聘14人备考考试试题及答案解析
- 2025年陕西华森盛邦科技有限公司招聘参考考试试题及答案解析
- 环卫作业实施方案
- 深度解析(2026)《GBT 26093-2010齿轮双面啮合综合测量仪》(2026年)深度解析
- 深度解析(2026)《GBT 25785-2010 2-氨基-4,6-二硝基酚钠(苦氨酸钠)》(2026年)深度解析
- 深度解析(2026)《GBT 25643-2010道路施工与养护机械设备 路面铣刨机》(2026年)深度解析
- 2025广西桂林电子科技大学第二批教职人员控制数工作人员公开招聘32人参考考试试题及答案解析
- 2025怀化市教育局直属学校公开招聘教职工65人参考笔试题库附答案解析
- 2025海南儋州市教育局赴高校(考核)招聘中学教师40人(一)考试笔试备考题库及答案解析
- 2025春季学期国开电大专科《理工英语1》一平台机考真题及答案(第五套)
- GB/T 45683-2025产品几何技术规范(GPS)几何公差一般几何规范和一般尺寸规范
- CJ/T 107-2013城市公共汽、电车候车亭
- 可靠性测试标准试题及答案
- 入股境外合同协议书
- 门店分期转让合同协议
- 一般将来时复习教案
- 瑜伽馆年度店长工作总结
- 高效空调制冷机房的关键技术现状与展望
- 2024-2025学年成都市青羊区九年级上期末(一诊)英语试题(含答案和音频)
- 《小讲课糖尿病》课件
评论
0/150
提交评论