版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昭通市大关县民族中学2026届高一数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行2.为了得到函数的图象,只要把函数图象上所有的点()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变3.已知函数,则函数()A.有最小值 B.有最大值C.有最大值 D.没有最值4.已知函数,若关于的方程有四个不同的实数解,且满足,则下列结论正确的是()A. B.C. D.5.“”是“函数为偶函数”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知函数在区间上单调递增,且在区间上只取得一次最大值,则取值范围是()A. B.C. D.7.若函数的零点与的零点之差的绝对值不超过0.25,则可以是A B.C. D.8.若关于的方程在上有实数根,则实数的取值范围是()A. B.C. D.9.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.的弧度数是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为,其弧长是其半径的2倍,则__________12.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________13.函数的定义域是________________.14.写出一个最小正周期为2的奇函数________15.的值为_______16.已知函数①当a=1时,函数的值域是___________;②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,(1)若,求实数a,b满足的条件;(2)若,求实数m的取值范围18.已知函数的最小正周期为,其中(1)求的值;(2)当时,求函数单调区间;(3)求函数在区间上的值域19.已知二次函数满足,且.(1)求函数在区间上的值域;(2)当时,函数与的图像没有公共点,求实数的取值范围.20.已知,函数.(1)求函数的定义域;(2)求函数的零点;(3)若函数的最大值为2,求的值.21.已知函数(其中a为常数)向左平移各单位其函数图象关于y轴对称.(1)求值;(2)当时,的最大值为4,求a的值;(3)若在有三个解,求a的范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.2、B【解析】直接利用三角函数伸缩变换法则得到答案.【详解】为了得到函数的图象,只需把函数的图象上所有的点横坐标缩短到原来的倍,纵坐标不变.故选:B3、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B4、D【解析】先作函数和的图象,利用特殊值验证A错误,再结合对数函数的性质及二次函数的对称性,计算判断BCD的正误即可.【详解】作函数和的图象,如图所示:当时,,即,解得,此时,故A错误;结合图象知,,当时,可知是方程,即的二根,故,,端点取不到,故BC错误;当时,,即,故,即,所以,故,即,所以,故D正确.故选:D.【点睛】方法点睛:已知函数有零点个数求参数值(取值范围)或相关问题,常先分离参数,再作图象,将问题转化成函数图象的交点问题,利用数形结合法进行分析即可.5、A【解析】根据充分必要条件定义判断【详解】时,是偶函数,充分性满足,但时,也是偶函数,必要性不满足应是充分不必要条件故选:A6、C【解析】根据三角恒等变换化简,结合函数单调区间和取得最值的情况,利用整体法即可求得参数的范围.【详解】因为,因为在区间上单调递增,由,则,则,解得,即;当时,,要使得该函数取得一次最大值,故只需,解得;综上所述,的取值范围为.故选:C.第II卷7、A【解析】因为函数g(x)=4x+2x-2在R上连续,且,,设函数的g(x)=4x+2x-2的零点为,根据零点存在性定理,有,则,所以,又因为f(x)=4x-1的零点为,函数f(x)=(x-1)2的零点为x=1,f(x)=ex-1的零点为,f(x)=ln(x-0.5)的零点为,符合为,所以选A考点:零点的概念,零点存在性定理8、A【解析】当时,令,可得出,可得出,利用函数的单调性求出函数在区间上的值域,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】当时,令,则,可得,设,其中,任取、,则.当时,,则,即,所以,函数在上为减函数;当时,,则,即,所以,函数在上为增函数.所以,,,,则,故函数在上的值域为,所以,,解得.故选:A.9、A【解析】解两个不等式,利用集合的包含关系判断可得出结论.【详解】解不等式可得,解不等式可得或,因为或,因此,“”是“”的充分不必要条件.故选:A.10、C【解析】弧度,弧度,则弧度弧度,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】由已知得,所以则,故答案.12、或【解析】设所求直线方程为,将点代入上式可得或.考点:直线的方程13、,【解析】根据题意由于有意义,则可知,结合正弦函数的性质可知,函数定义域,,,故可知答案为,,,考点:三角函数性质点评:主要是考查了三角函数的性质的运用,属于基础题14、【解析】根据奇函数性质可考虑正弦型函数,,再利用周期计算,选择一个作答即可.【详解】由最小正周期为2,可考虑三角函数中的正弦型函数,,满足,即是奇函数;根据最小正周期,可得.故函数可以是中任一个,可取.故答案为:.15、【解析】直接按照诱导公式转化计算即可【详解】tan300°=tan(300°﹣360°)=tan(﹣60°)=﹣tan60°=故答案为:【点睛】本题考查诱导公式的应用:求值.一般采用“大角化小角,负角化正角”的思路进行转化16、①.(-∞,1]②.(-1,1]【解析】①分段求值域,再求并集可得的值域;②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围【详解】①当a=1时,即当x≤1时,,当x>1时,,综上所述当a=1时,函数的值域是,②由无解,故=在上与直线只有一个公共点,则有一个零点,即实数的取值范围是.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)直接利用并集结果可得,;(2)根据可得,再对集合的解集情况进行分类讨论,即可得答案;【详解】解:(1);,∴,;(2),∴分情况讨论①,即时得;②若,即,中只有一个元素1符合题意;③若,即时得,∴∴综上【点睛】由集合间的基本关系求参数时,注意对可变的集合,分空集和不为空集两种情况.18、(1)(2)函数的单调减区间为,单调增区间为(3)【解析】(1)利用求得.(2)根据三角函数单调区间的求法,求得在区间上的单调区间.(3)根据三角函数值域的求法,求得在区间上的值域.【小问1详解】由函数的最小正周期为,,所以,可得,【小问2详解】由(1)可知,当,有,,当,可得,故当时,函数单调减区间为,单调增区间为【小问3详解】当,有,,可得,有,故函数在区间上的值域为19、(1)(2)【解析】(1)通过已知得到方程组,解方程组即得二次函数的解析式,再利用二次函数的图象求函数的值域得解;(2)求出,等价于,求出二次函数最小值即得解.【小问1详解】解:设、∴,∴,∴,,又,∴,∴.∵对称轴为直线,,,,∴函数的值域.【小问2详解】解:由(1)可得:∵直线与函数的图像没有公共点∴,当时,∴,∴.20、(1);(2)零点为或;(3).【解析】(1)由函数的解析式可得,解可得的取值范围,即可得答案,(2)根据题意,由函数零点的定义可得,即,解可得的值,即可得答案,(3)根据题意,将函数的解析式变形可得,设,分析的最大值可得的最大值为,则有,解可得的值,即可得答案.【详解】解:(1)根据题意,,必有,解可得,即函数的定义域为,(2),若,即,即,解可得:或,即函数的零点为或,(3),设,,则,有最大值4,又由,则函数有最大值,则有,解可得,故.21、(1)(2)(3)【解析】(1)根据题意可的得到再根据的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025浙江长兴空域产业发展有限公司招聘职业经理人1人参考笔试题库附答案解析
- 2025内蒙古鄂尔多斯羊绒服装集团绒纺事业部招聘20人备考笔试试题及答案解析
- 2025广东广州市越秀区人民街道办事处招聘辅助人员2人备考笔试试题及答案解析
- 2025重庆市大足区国衡商贸有限责任公司招聘派遣制人员1人考试备考题库及答案解析
- 重庆医科大学附属北碚医院招聘护理10人考试备考题库及答案解析
- 2025福建省国银保安服务有限公司招聘教官2人模拟笔试试题及答案解析
- 2025黑龙江哈尔滨启航劳务派遣有限公司派遣到哈尔滨工业大学航天学院空间控制与惯性技术研究中心招聘参考考试题库及答案解析
- 2025湖北智新半导体有限公司招聘备考笔试试题及答案解析
- 重庆医科大学附属北碚医院招聘护理10人参考笔试题库附答案解析
- 网店合伙合同协议
- 仿古建筑概念方案设计说明
- DB32-T 1086-2022 高速公路建设项目档案管理规范
- 核心员工留任与薪酬激励方案
- 代码开发安全培训课件
- (2025年标准)科研资助经费协议书
- 知识产权侵权培训课件
- 2025年四川省事业单位招聘考试综合类公共基础知识真题模拟试卷
- 肿瘤常见急症及处理
- 阑尾炎健康宣教课件
- 2025年辅助考试员考试题库
- 供应链协同策略-洞察及研究
评论
0/150
提交评论