2026届山西省朔州市数学高二上期末调研模拟试题含解析_第1页
2026届山西省朔州市数学高二上期末调研模拟试题含解析_第2页
2026届山西省朔州市数学高二上期末调研模拟试题含解析_第3页
2026届山西省朔州市数学高二上期末调研模拟试题含解析_第4页
2026届山西省朔州市数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省朔州市数学高二上期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆:,是直线的一点,过点作圆的切线,切点为,,则的最小值为()A. B.C. D.2.双曲线的左焦点到其渐近线的距离是()A. B.C. D.3.若直线的斜率为,则的倾斜角为()A. B.C. D.4.若关于x的不等式的解集为,则关于x的不等式的解集是()A. B.,或C.,或 D.,或,或5.双曲线的左、右焦点分别为F1,F2,点P在双曲线上,下列结论不正确的是()A.该双曲线的离心率为B.该双曲线的渐近线方程为C.点P到两渐近线的距离的乘积为D.若PF1⊥PF2,则△PF1F2的面积为326.两圆和的位置关系是()A.内切 B.外离C.外切 D.相交7.函数的导函数的图象如图所示,则下列说法正确的是()A.函数在上单调递增B.函数的递减区间为C.函数在处取得极大值D.函数在处取得极小值8.下列命题中正确的是()A.函数最小值为2.B.函数的最小值为2.C.函数的最小值为D.函数的最大值为9.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③10.设正方体的棱长为,则点到平面的距离是()A. B.C. D.11.如图,在直三棱柱中,,,E是的中点,则直线BC与平面所成角的正弦值为()A. B.C. D.12.已知正方形的四个顶点都在椭圆上,若的焦点F在正方形的外面,则的离心率的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设x,y满足约束条件则的最大值为________14.已知点在抛物线上,那么点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为______15.已知P为抛物线上的一个动点,设P到抛物线准线的距离为d,点,那么的最小值为______16.已知集合,集合,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△BDC′的位置,如图2所示,并使得平面BDC′⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=.图1图2(1)求平面FBC′与平面FBA夹角的余弦值;(2)在线段AD上是否存在一点M,使得⊥平面?若存在,求的值;若不存在,说明理由.18.(12分)在平面直角坐标系中,已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的直角坐标为,直线与曲线的交点为,求的值.19.(12分)求适合下列条件的曲线的标准方程:(1),焦点在轴上的双曲线的标准方程;(2)焦点在轴上,且焦点到准线的距离是2的抛物线的标准方程20.(12分)已知数列满足,,.(1)证明:数列是等比数列,并求其通项公式;(2)若,求数列的前项和.21.(12分)某保险公司根据官方公布的历年营业收入,制成表格如下:表1年份2011201220132014201520162017201820192020年份序号x12345678910营业收入y(亿元)0.529.3633.6132352571912120716822135由表1,得到下面的散点图:根据已有的函数知识,某同学选用二次函数模型(b和a是待定参数)来拟合y和x的关系.这时,可以对年份序号做变换,即令,得,由表1可得变换后的数据见表2.表2T149162536496481100Y0.529.3633.6132352571912120716822135(1)根据表中数据,建立y关于t的回归方程(系数精确到个位数);(2)根据(1)中得到的回归方程估计2021年的营业收入,以及营业收入首次超过4000亿元的年份.附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:.22.(10分)已知是等差数列的前n项和,且,(1)求数列的通项公式;(2)令,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,为四边形的面积的2倍,即,然后利用切线长定理,将问题转化为圆心到直线的距离求解.【详解】圆:的圆心为,半径,设四边形的面积为,由题设及圆的切线性质得,,∵,∴,圆心到直线的距离为,∴的最小值为,则的最小值为,故选:A2、A【解析】求出双曲线焦点坐标与渐近线方程,利用点到直线的距离公式可求得结果.【详解】在双曲线中,,,,所以,该双曲线的左焦点坐标为,渐近线方程为,即,因,该双曲线的左焦点到渐近线的距离为.故选:A3、C【解析】设直线l倾斜角为,根据题意得到,即可求解.【详解】设直线l的倾斜角为,因为直线的斜率是,可得,又因为,所以,即直线的倾斜角为.故选:C.4、D【解析】先利用已知一元二次不等式的解集求得参数,再代入所求不等式,利用分式大于零,则分子分母同号,列不等式计算即得结果.【详解】不等式解集为,即的二根是1和2,利用根和系数的关系可知,故不等式即转化成,即,等价于或者,解得或,或者.故解集为,或,或.故选:D.【点睛】分式不等式的解法:(1)先化简成右边为零的形式(或),等价于一元二次不等式(或)再求解即可;(2)先化简成右边为零的形式(或),再利用分子分母同号(或者异号),列不等式组求解即可.5、D【解析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a=3,b=4,c=5,,故离心率e,故A正确;由双曲线的性质可知,双曲线线的渐近线方程为y=±x,故B正确;设P(x,y),则P到两渐近线的距离之积为,故C正确;若PF1⊥PF2,则△PF1F2是直角三角形,由勾股定理得,由双曲线的定义可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D错误.故选:D6、A【解析】计算出圆心距,利用几何法可判断两圆的位置关系.【详解】圆的圆心坐标为,半径为,圆的圆心坐标为,半径为,两圆圆心距为,则,因此,两圆和内切.故选:A.7、C【解析】根据函数单调性与导数之间的关系及极值的定义结合图像即可得出答案.【详解】解:根据函数的导函数的图象可得,当时,,故函数在和上递减,当时,,故函数在和上递增,所以函数在和处取得极小值,在处取得极大值,故ABD错误,C正确.故选:C.8、D【解析】根据基本不等式知识对选项逐一判断【详解】对于A,时为负值,故A错误对于B,,而无解,无法取等,故B错误对于,当且仅当即时等号成立,故,D正确,C错误故选:D9、B【解析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.10、D【解析】建立空间直角坐标系,根据空间向量所学点到面的距离公式求解即可.【详解】建立如下图所示空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴.因为正方体的边长为4,所以,,,,,所以,,,设平面的法向量,所以,,即,设,所以,,即,设点到平面的距离为,所以,故选:D.11、D【解析】以,,的方向分別为x轴、y轴、z轴的正方向,建立空间直角坐标系,利用向量法即可求出答案.【详解】解:由题意知,CA,CB,CC1两两垂直,以,,的方向分別为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则令,得.因为,所以,故直线BC与平面所成角的正弦值为.故选:D.12、C【解析】如图由题可得,进而可得,即求.【详解】如图根据对称性,点D在直线y=x上,可设,则,∴,可得,,即,又解得.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】先作出可行域,由,得,作出直线,向下平移过点时,取得最大值,求出点坐标代入目标函数中可得答案【详解】作出可行域如图(图中阴影部分),由,得,作出直线,向下平移过点时,取得最大值,由,得,即,所以的最大值为,故答案为:114、【解析】由抛物线定义可得,由此可知当为与抛物线的交点时,取得最小值,进而求得点坐标.【详解】由题意得:抛物线焦点为,准线为作,垂直于准线,如下图所示:由抛物线定义知:(当且仅当三点共线时取等号)即的最小值为,此时为与抛物线的交点故答案为【点睛】本题考查抛物线线上的点到焦点的距离与到定点距离之和最小的相关问题的求解,关键是能够熟练应用抛物线定义确定最值取得的位置.15、5【解析】由抛物线的定义可得,所以,由图可知当三点共线时,取得最小值,从而可求得结果【详解】抛物线的焦点,准线为,如图,过作垂直准线于点,则,所以,由图可知当三点共线时,取得最小值,即最小值为,,所以的最小值为5,故答案为:516、##(-1,2]【解析】根据两集合的并集的含义,即可得答案.【详解】因为集合,集合,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在,理由见解析【解析】(1)利用垂直关系,以点为原点,建立空间直角坐标系,分别求平面和平面的法向量和,利用公式,即可求解;(2)若满足条件,,利用向量的坐标表示,判断是否存在点满足.【小问1详解】∵,E为BD的中点∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如图以E原点,分别以EB、AE、EC′所在直线为x轴、y轴、z轴建立空间直角坐标系,则B(1,0,0),A(0,-,0),D(-1,0,0),F(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),设平面的法向量为=(x,y,z),则,取z=1,得平面的一个法向量=(,1,1),设平面FBA的法向量为=(a,b,c),则取b=1,得平面FBA的一个法向量为=(-,1,0),∴设平面ABD与平面的夹角为θ,则∴平面ABD与平面夹角的余弦值为.【小问2详解】假设在线段AD上存在M(x,y,z),使得平面,设(0≤λ≤1),则(x,y+,z)=(-1,,0),即(x,y+,z)=(-λ,,0),∴,,z=0,∴,是平面的一个法向量由∥,得,此方程无解.∴线段AD上不存点M,使得平面.18、(1);(2)3.【解析】(1)把展开得,两边同乘得,再代极坐标公式得曲线的直角坐标方程.(2)将代入曲线C的直角坐标方程得,再利用直线参数方程t的几何意义和韦达定理求解.【详解】(1)把展开得,两边同乘得①将代入①,即得曲线的直角坐标方程为②(2)将代入②式,得,点M的直角坐标为(0,3),设这个方程的两个实数根分别为t1,t2,则∴t1<0,t2<0则由参数t的几何意义即得.【点睛】本题主要考查极坐标和直角坐标的互化、直线参数方程t的几何意义,属于基础题.19、(1);(2)或【解析】(1)设方程为(,),即得解;(2)由题得,即得解.【详解】(1)解:由题意,设方程为(,),,,,,所以双曲线的标准方程是(2)焦点到准线的距离是2,,∴当焦点在轴上时,抛物线的标准方程为或20、(1)证明见解析,;(2).【解析】(1)由已知条件,可得为常数,从而得证数列是等比数列,进而可得数列的通项公式;(2)由(1)可得,又,所以,所以,利用错位相减法即可求解数列的前项和.【小问1详解】证明:由题意,因为,,,所以,,所以数列是以2为首项,3为公比的等比数列,所以;【小问2详解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.21、(1);(2)估计2021年的营业收入约为2518亿元,估计营业收入首次超过4000亿元的年份为2024年.【解析】(1)根据的公式,将题干中的数据代入,即得解;(2)代入,可估计2021年的营业

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论