版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省陆良县2026届高一上数学期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知当时,函数取最大值,则函数图象的一条对称轴为A. B.C. D.2.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件3.从数字中随机取两个不同的数,分别记为和,则为整数的概率是()A. B.C. D.4.已知集合,,则A. B.C. D.5.设函数,A.3 B.6C.9 D.126.函数的图象如图所示,则函数y的表达式是()A. B.C. D.7.已知sinα+cosα=,则sin的值为()A.- B.C.- D.8.直线(为实常数)的倾斜角的大小是A B.C. D.9.已知函数,则()A.5 B.2C.0 D.110.把长为的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数是定义在上的奇函数,当时,,则______12.函数fx=13.已知直线与圆相切,则的值为________14.函数的反函数是___________.15.若,且α为第一象限角,则___________.16.如果函数满足在集合上的值域仍是集合,则把函数称为H函数.例如:就是H函数.下列函数:①;②;③;④中,______是H函数(只需填写编号)(注:“”表示不超过x的最大整数)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某生物研究者于元旦在湖中放入一些风眼莲(其覆盖面积为),这些风眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼莲的覆盖面积为,凤眼莲的覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型与)可供选择(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份.(参考数据:,)18.已知(1)求函数的单调递增区间与对称轴方程;(2)当时,求的最大值与最小值19.已知函数.(1)当有是实数解时,求实数的取值范围;(2)若,对一切恒成立,求实数的取值范围.20.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数表示成的形式.(1)若,,,,,把的二次项系数表示成关于f的函数,并求的值域(此处视e为给定的常数,答案用e表示);(2)若,,,,求证:.21.已知不等式.(1)求不等式的解集;(2)若当时,不等式总成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由最值确定参数a,再根据正弦函数性质确定对称轴【详解】由题意得因此当时,,选A.【点睛】本题考查三角函数最值与对称轴,考查基本分析求解能力,属基础题.2、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.3、B【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率.【详解】解:从数字中随机取两个不同的数,则有种选法,有种选法,共有种情况;则满足为整数的情况如下:当时,或有种情况;当时,有种情况;当或时,则不可能为整数,故共有种情况,故为整数的概率是:.故选:B.4、A【解析】由得,所以;由得,所以.所以.选A5、C【解析】.故选C.6、A【解析】由函数的最大、最小值,算出和,根据函数图像算出周期,利用周期公式算出.再由当时函数有最大值,建立关于的等式解出,即可得到函数的表达式.【详解】函数的最大值为,最小值为,,,又函数的周期,,得.可得函数的表达式为,当时,函数有最大值,,得,可得,结合,取得,函数的表达式是.故选:.【点睛】本题给出正弦型三角函数的图象,求它的解析式.着重考查了三角函数的周期公式、三角函数的图象的变换与解析式的求法等知识属于中档题.7、C【解析】应用辅助角公式可得,再应用诱导公式求目标三角函数的值.【详解】由题设,,而.故选:C8、D【解析】计算出直线的斜率,再结合倾斜角的取值范围可求得该直线的倾斜角.【详解】设直线倾斜角为,直线的斜率为,所以,,则.故选:D.【点睛】本题考查直线倾斜角的计算,一般要求出直线的斜率,考查计算能力,属于基础题.9、C【解析】由分段函数,选择计算.【详解】由题意可得.故选:C.【点睛】本题考查分段函数的求值,属于简单题.10、D【解析】先得到两个正三角形面积之和的表达式,再对其求最小值即可.【详解】设一个正三角形的边长为,则另一个正三角形的边长为,设两个正三角形的面积之和为,则,当时,S取最小值.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、11【解析】根据奇函数性质求出函数的解析式,然后逐层代入即可.【详解】,,当时,,即,,,故答案为:11.12、(0.+∞)【解析】函数定义域为R,∵3x>0∴3考点:函数单调性与值域13、2【解析】直线与圆相切,圆心到直线的距离等于半径,列出方程即可求解的值【详解】依题意得,直线与圆相切所以,即,解得:,又,故答案为:214、;【解析】根据指数函数与对数函数互为反函数直接求解.【详解】因为,所以,即的反函数为,故答案为:15、【解析】先求得,进而可得结果.【详解】因为,又为第一象限角,所以,,故.故答案为:.16、③④【解析】根据新定义进行判断.【详解】根据定义可以判断①②在集合上的值域不是集合,显然不是H函数.③④是H函数.③是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足是H函数.④是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足H函数.故答案为:③④三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数模型较为合适,且该函数模型的解析式为;(2)月份.【解析】(1)根据两个函数模型增长的快慢可知函数模型较为合适,将点、代入函数解析式,求出、的值,即可得出函数模型的解析式;(2)分析得出,解此不等式即可得出结论.【详解】(1)由题设可知,两个函数、)在上均为增函数,随着的增大,函数的值增加得越来越快,而函数的值增加得越来越慢,由于风眼莲在湖中的蔓延速度越来越快,故而函数模型满足要求.由题意可得,解得,,故该函数模型的解析式为;(2)当时,,故元旦放入凤眼莲的面积为,由,即,故,由于,故.因此,凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份是月份.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性18、(1)单调递增区间为,k∈Z.对称轴方程为,其中k∈Z(2)f(x)的最大值为2,最小值为–1【解析】(1)因为,由,求得,k∈Z,可得函数f(x)的单调递增区间为,k∈Z由,求得,k∈Z故f(x)的对称轴方程为,其中k∈Z(2)因为,所以,故有,故当即x=0时,f(x)的最小值为–1,当即时,f(x)的最大值为219、(1);(2)【解析】(1)由题意可知实数的取值范围为函数的值域,结合三角函数的范围和二次函数的性质可知时函数取得最小值,当时函数取得最大值,实数的取值范围是.(2)由题意可得时函数取得最大值,当时函数取得最小值,原问题等价于,求解不等式组可得实数的取值范围是.试题解析:(1)因为,可化得,若方程有解只需实数的取值范围为函数的值域,而,又因为,当时函数取得最小值,当时函数取得最大值,故实数的取值范围是.(2)由,当时函数取得最大值,当时函数取得最小值,故对一切恒成立只需,解得,所以实数的取值范围是.点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.20、(1);(2)证明见解析【解析】(1)根据已知写出二次项系数后可得;;(2)注意到,因此可以在不等式两边同乘以分母后化简不等式,然后比较可得(可作差或凑配证明)【小问1详解】由题意又,所以即的值域是;【小问2详解】因为,,,,所以,因为,,,,所以,所以,所以,因为,,,,所以,所以,所以,综上,原不等式成立21、(1);(2).【解析】(1)利用对数函数的单调性以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)GBT 26949.13-2017工业车辆 稳定性验证 第13部分:带门架的越野型叉车
- 2026上半年河北事业单位招聘考试预参考笔试题库附答案解析
- 深度解析(2026)《GBT 26084-2010船舶电气橡胶制品通 用技术条件》
- 2025云南昆明医科大学科学技术处招聘科研助理岗位工作人员6人参考笔试题库附答案解析
- 2025年绍兴市上虞区中医医院医共体招聘编外人员5人参考笔试题库附答案解析
- 深度解析(2026)《GBT 25788-2010C.I.溶剂蓝104》(2026年)深度解析
- 2025湖北武汉长江新区公益性岗位招聘25人参考考试试题及答案解析
- 2025浙江杭州市萧山区机关事业单位第三次招聘编外人员35人备考考试试题及答案解析
- 2026湖北省第三人民医院人才招聘32人参考考试试题及答案解析
- 北京市丰台区北宫镇社区卫生服务中心招聘3人一参考笔试题库附答案解析
- 酒类进货合同范本
- 2026年教师资格之中学综合素质考试题库500道及答案【真题汇编】
- TCEC5023-2020电力建设工程起重施工技术规范报批稿1
- 2025秋国开《人力资源管理理论与实务》形考任务1234参考答案
- 2026年5G网络升级培训课件
- 2026云南昆明铁道职业技术学院校园招聘4人考试笔试参考题库及答案解析
- 2025安徽宣城宁国市面向社会招聘社区工作者25人(公共基础知识)综合能力测试题附答案解析
- 模板工程技术交底
- 2025年区域经济一体化发展模式可行性研究报告及总结分析
- 医疗器械全生命周期有效性管理策略
- 排水管道养护试题及答案
评论
0/150
提交评论