2026届浙江省杭州市七县市高二数学第一学期期末预测试题含解析_第1页
2026届浙江省杭州市七县市高二数学第一学期期末预测试题含解析_第2页
2026届浙江省杭州市七县市高二数学第一学期期末预测试题含解析_第3页
2026届浙江省杭州市七县市高二数学第一学期期末预测试题含解析_第4页
2026届浙江省杭州市七县市高二数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届浙江省杭州市七县市高二数学第一学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的两个顶点分别为A、B,点P为双曲线上除A、B外任意一点,且点P与点A、B连线的斜率为,若,则双曲线的离心率为()A. B.C.2 D.32.若圆与圆有且仅有一条公切线,则()A.-23 B.-3C.-12 D.-133.抛物线准线方程为()A. B.C. D.4.已知点,点关于原点对称点为,则()A. B.C. D.5.将函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.6.在某次赛车中,名参赛选手的成绩(单位:)全部介于到之间(包括和),将比赛成绩分为五组:第一组,第二组,···,第五组,其频率分布直方图如图所示.若成绩在内的选手可获奖,则这名选手中获奖的人数为A. B.C. D.7.已知抛物线,,点在抛物线上,记点到直线的距离为,则的最小值是()A.5 B.6C.7 D.88.已知,且,则的最大值为()A. B.C. D.9.已知,则下列不等式一定成立的是()A. B.C. D.10.求点关于x轴的对称点的坐标为()A. B.C. D.11.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.若满足,顶点,且其“欧拉线”与圆相切,则:①.圆M上的点到原点的最大距离为②.圆M上存在三个点到直线的距离为③.若点在圆M上,则的最小值是④.若圆M与圆有公共点,则上述结论中正确的有()个A.1 B.2C.3 D.412.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前的前n项和为,数列的的前n项和为,则满足的最小n的值为______14.若等比数列的前n项和为,且,则__________.15.“五经”是《诗经》、《尚书》、《礼记》、《周易》、《春秋》的合称,贵为中国文化经典著作,所载内容及哲学思想至今仍具有积极意义和参考价值.某校计划开展“五经”经典诵读比赛活动,某班有、两位同学参赛,比赛时每位同学从这本书中随机抽取本选择其中的内容诵读,则、两位同学抽到同一本书的概率为______.16.某部门计划对某路段进行限速,为调查限速60km/h是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按,,,分组,绘制成如图所示频率分布直方图.则________;这300辆汽车中车速低于限速60km/h的汽车有______辆.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①;②,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在中,内角A,B,C的对边分别为a,b,c,设的面积为S,已知_________.(1)求的值;(2)若,求值.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)为了了解某工厂生产的产品情况,从该工厂生产的产品随机抽取了一个容量为200的样本,测量它们的尺寸(单位:),数据分为,,,,,,七组,其频率分布直方图如图所示.(1)根据频率分布直方图,求200件样本中尺寸在内的样本数;(2)记产品尺寸在内为等品,每件可获利6元;产品尺寸在内为不合格品,每件亏损3元;其余的为合格品,每件可获利4元.若该机器一个月共生产2000件产品.以样本的频率代替总体在各组的频率,若单月利润未能达到9000元,则需要对该工厂设备实施升级改造.试判断是否需要对该工厂设备实施升级改造.19.(12分)已知椭圆的一个焦点坐标为,离心率为(1)求椭圆C的标准方程;(2)O为坐标原点,点P在椭圆C上,若的面积为,求点P的坐标20.(12分)在△ABC中,角A,B,C所对的边为a,b,c,其中,,且(1)求角B的值;(2)若,判断△ABC的形状21.(12分)已知数列{an}的首项a1=1,且an+1=(n∈N*).(1)证明:数列是等比数列;(2)设bn=-,求数列{bn}的前n项和Sn.22.(10分)已知抛物线的焦点为F,点在抛物线上,且在第一象限,的面积为(O为坐标原点).(1)求抛物线的标准方程;(2)经过点的直线与交于,两点,且,异于点,若直线与的斜率存在且不为零,证明:直线与的斜率之积为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意设设,根据题意得到,进而求得离心率【详解】根据题意得到设,因为,所以,所以,则故选:C.2、A【解析】根据两圆有且仅有一条公切线,得到两圆内切,从而可求出结果.【详解】因为圆,圆心为,半径为;圆可化为,圆心为,半径,又圆与圆有且仅有一条公切线,所以两圆内切,因此,即,解得.故选:A.3、D【解析】由抛物线的准线方程即可求解【详解】由抛物线方程得:.所以,抛物线的准线方程为故选D【点睛】本题主要考查了抛物线的准线方程,属于基础题4、C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C5、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A6、A【解析】先根据频率分布直方图确定成绩在内的频率,进而可求出结果.【详解】由题意可得:成绩在内的频率为,又本次赛车中,共名参赛选手,所以,这名选手中获奖的人数为.故选A【点睛】本题主要考查频率分布直方图,会根据频率分布直方图求频率即可,属于常考题型.7、D【解析】先求出抛物线的焦点和准线,利用抛物线的定义将转化为的距离,即可求解.【详解】由已知得抛物线的焦点为,准线方程为,设点到准线的距离为,则,则由抛物线的定义可知∵,当点、、三点共线时等号成立,∴,故选:.8、A【解析】由基本不等式直接求解即可得到结果.【详解】由基本不等式知;(当且仅当时取等号),的最大值为.故选:A.9、B【解析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B10、D【解析】根据点关于坐标轴的对称点特征,直接写出即可.【详解】A点关于x轴对称点,横坐标不变,纵坐标与竖坐标为原坐标的相反数,故点的坐标为,故选:D11、A【解析】由题意求出的垂直平分线可得△的欧拉线,再由圆心到直线的距离求得,得到圆的方程,求出圆心到原点的距离,加上半径判断A;求出圆心到直线的距离判断B;再由的几何意义,即圆上的点与定点连线的斜率判断C;由两个圆有公共点可得圆心距与两个半径之间的关系,求得的取值范围判断D【详解】由题意,△的欧拉线即的垂直平分线,,,的中点坐标为,,则的垂直平分线方程为,即由“欧拉线”与圆相切,到直线的距离,,则圆的方程为:,圆心到原点的距离为,则圆上的点到原点的最大距离为,故①错误;圆心到直线的距离为,圆上存在三个点到直线的距离为,故②正确;的几何意义:圆上的点与定点连线的斜率,设过与圆相切的直线方程为,即,由,解得,的最小值是,故③错误;的圆心坐标,半径为,圆的的圆心坐标为,半径为,要使圆与圆有公共点,则圆心距的范围为,,,解得,故④错误故选:A12、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】由数列的前项和为,则当时,,所以,所以数列的前和为,当时,,当时,,所以满足的最小的值为.点睛:本题主要考查了等差数列与等比数列的综合应用问题,其中解答中涉及到数列的通项与的关系,推导数列的通项公式,以及等差、等比数列的前项和公式的应用,熟记等差、等比数列的通项公式和前项和公式是解答的关键,着重考查了学生的推理与运算能力.14、5【解析】根据题意和等比数列的求和公式,求得,结合求和公式,即可求解.【详解】因为,若时,可得,故,所以,化简得,整理得,解得或,因为,解得,所以.故答案为:.15、##【解析】计算出、两位同学各随机抽出一本书的结果种数,以及、两位同学抽到同一本书的结果种数,利用古典概型的概率公式可求得所求事件的概率.【详解】、两位同学抽到的结果都有种,由分步乘法计数原理可知,、两位同学各随机抽出一本书,共有种结果,而、两位同学抽到同一本书的结果有种,故所求概率为.故答案为:.16、①.②.【解析】根据个小矩形面积之和为1即可求出的值;根据频率分布直方图可以求出车速低于限速60km/h的频率,从而可求出汽车有多少辆【详解】由解得:这300辆汽车中车速低于限速60km/h的汽车有故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、条件选择见解析;(1);(2).【解析】(1)若选择①,先利用正弦定理进行边角互化,再结合正余弦的和差角公式化简可得,得出;若选择②,利用余弦定理及面积公式可得,得;(2)由(1)可知,由及得,,再根据余弦定理求解的值.【详解】解析:(1)选择条件①.,,得,选择条件②,由余弦定理及三角形的面积公式可得:,得.(2)由得,∵,,∴,解得.由余弦定理得:.【点睛】本题考查解三角形,难度一般.解答的关键在于根据题目中边角关系,运用正弦定理进行边角互化、再根据两角和与差的正弦公式进行化简是关键.一般地,当等式中含有a,b,c的关系式,且全为二次时,可利用余弦定理进行化简;当含有内角的正弦值及边的关系,且为一次式时,可考虑采用正弦定理进行边角互化.18、(1)件;(2)需要对该工厂设备实施升级改造.【解析】(1)根据评论分布直方图面积之和为1列等式计算得,用200乘以内频率即可得出答案;(2)根据题意计算等品件,不合格品有件,进而得合格品有件,根据题意计算其利润与9000比较判定需要对该工厂设备实施升级改造.【详解】解:(1)因为,解得,所以200件样本中尺寸在内的样本数为(件).(2)由题意可得,这批产品中优等品有件,这批产品中不合格品有件,这批产品中合格品有件,元.所以该工厂生产的产品一个月所获得的利润为8960元,因为,所以需要对该工厂设备实施升级改造.【点睛】频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标;(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和;(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.19、(1)(2)或或或【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)根据三角形的面积列方程,化简求得点的坐标.【小问1详解】设椭圆C的焦距为,由题意有,得,,故椭圆C的标准方程为;【小问2详解】设点P的坐标为,由的面积为,有,得,有,得,故点P的坐标为或或或20、(1)(2)等边三角形【解析】(1)把化为,然后由正弦定理化边为角,利用两角和的正弦公式、诱导公式可求得;(2)由余弦定理及三角形面积公式可得,从而得出三角形为等边三角形【小问1详解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小问2详解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以该三角形为等边三角形21、(1)证明见解析.(2)2-.【解析】(1)根据递推公式,得到,推出,即可证明数列是等比数列;(2)先由(1)求出,即bn=,再错位相减法,即可求出数列的和.【小问1详解】(1)证明:因为an+1=,所以==+,所以-=-=,又a1-≠0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论