版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宣城二中2026届高二数学第一学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.2.若数列的通项公式为,则该数列的第5项为()A. B.C. D.3.已知直线,当变化时,所有直线都恒过点()A.B.C.D.4.已知,,且,则向量与的夹角为()A. B.C. D.5.在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A. B.C. D.6.已知函数,则函数在点处的切线方程为()A. B.C. D.7.直线与直线的位置关系是()A.相交但不垂直 B.平行C.重合 D.垂直8.下列三个命题:①“若,则a,b全为0”的逆否命题是“若a,b全不为0,则”;②若事件A与事件B互斥,则;③设命题p:若m是质数,则m一定是奇数,那么是真命题;其中真命题的个数为()A.3 B.2C.1 D.09.设数列、都是等差数列,若,则等于()A. B.C. D.10.以下命题是真命题的是()A.方差和标准差都是刻画样本数据分散程度的统计量B.若m为数据(i=1,2,3,····,2021)的中位数,则C.回归直线可能不经过样本点的中心D.若“”为假命题,则均为假命题11.命题:“∃x<1,x2<1”的否定是()A.∀x≥1,x2<1 B.∃x≥1,x2≥1C.∀x<1,x2≥1 D.∃x<1,x2≥112.在等差数列中,若,,则公差d=()A. B.C.3 D.-3二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,,,满足,,,则的最大值是______14.已知实数x,y满足方程,则的最大值为_________15.已知直线,圆,若直线与圆相交于两点,则的最小值为______16.已知函数是上的奇函数,,对,成立,则的解集为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处的切线与轴平行(1)求的值;(2)判断在上零点的个数,并说明理由18.(12分)已知空间三点.(1)求以为邻边平行四边形的周长和面积;(2)若,且分别与垂直,求向量的坐标.19.(12分)在①,②,③,这三个条件中任选一个,补充在下面的问题中,并解答问题在中,内角A,,的对边分别为,,,且满足______________(1)求;(2)若的面积为,在边上,且,求的最小值注:如果选择多个条件分别解答,按第一个解答计分20.(12分)已知椭圆,其焦点为,,离心率为,若点满足.(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点,的重心满足:,求实数的取值范围.21.(12分)年月初,浙江杭州、宁波、绍兴三地相继爆发新冠肺炎疫情.疫情期间口罩需求量大增,某医疗器械公司开始生产口罩,并且对所生产口罩的质量按指标测试分数进行划分,其中分数不小于的为合格品,否则为不合格品,现随机抽取件口罩进行检测,其结果如表:测试分数数量(1)根据表中数据,估计该公司生产口罩的不合格率;(2)若用分层抽样的方式按是否合格从所生产口罩中抽取件,再从这件口罩中随机抽取件,求这件口罩全是合格品的概率22.(10分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.2、C【解析】直接根据通项公式,求;【详解】,故选:C3、D【解析】将直线方程整理为,从而可得直线所过的定点.【详解】可化为,∴直线过定点,故选:D.4、B【解析】先求出向量与的夹角的余弦值,即可求出与的夹角.【详解】,所以,∴,∴,∴,又∵,∴与的夹角为.故选:B.5、D【解析】由题,求得圆的圆心和半径,易知最长弦,最短弦为过点与垂直的弦,再求得BD的长,可得面积.【详解】圆化简为可得圆心为易知过点的最长弦为直径,即而最短弦为过与垂直的弦,圆心到的距离:所以弦所以四边形ABCD的面积:故选:D6、C【解析】依据导数几何意义去求函数在点处的切线方程即可解决.【详解】则,又则函数在点处的切线方程为,即故选:C7、C【解析】把直线化简后即可判断.【详解】直线可化为,所以直线与直线的位置关系是重合.故选:C8、B【解析】写出逆否命题可判断①;根据互斥事件的概率定义可判断②;根据写出再判断真假可判断③.【详解】对于①,“,则a,b全为0”的逆否命题是“若a,b不全为0,则”,故①错误;对于②,满足互斥事件的概率求和的方法,所以②为真命题;③命题p:若m是质数,则m一定是奇数.2是质数,但2是偶数,命题p是假命题,那么真命题故选:B.9、A【解析】设等差数列的公差为,根据数列是等差数列可求得,由此可得出,进而可求得所求代数式的值.【详解】设等差数列的公差为,即,由于数列也为等差数列,则,可得,即,可得,即,解得,所以,数列为常数列,对任意的,,因此,.故选:A.【点睛】关键点点睛:本题考查等差数列基本量的求解,通过等差数列定义列等式求解公差是解题的关键,另外,在求解有关等差数列基本问题时,可充分利用等差数列的定义以及等差中项法来求解.10、A【解析】A:根据方差和标准差的定义进行判断;B:根据中位数的定义判断;C:根据回归直线必过样本中心点进行判断;D:根据“且”命题真假关系进行判断.【详解】对于A,方差和标准差都是刻画样本数据分散程度的统计量,故A正确;对于B,若为数据,2,3,,的中位数,需先将数据从小到大排列,此时数据里面之间的数顺序可能发生变化,则为排序后的第1010个数据的值,这个数不一定是原来的,故B错误;对于C,回归直线一定经过样本点的中心,,故C错误;对于D,若“”为假命题,则、中至少有一个是假命题,故D错误;故选:A11、C【解析】将特称命题否定为全称命题即可【详解】根据含有量词的命题的否定,则“∃x<1,x2<1”的否定是“∀x<1,x2≥1”.故选:C.12、C【解析】由等差数列的通项公式计算【详解】因为,,所以.故选:C【点睛】本题考查等差数列的通项公式,利用等差数列通项公式可得,二、填空题:本题共4小题,每小题5分,共20分。13、10【解析】采用数形结合法,将所求问题转化为两点到直线的距离和的倍,结合梯形中位线性质和三角形三边关系可求得答案.【详解】由,,,可知,点在圆上,由,即为等腰直角三角形,结合点到直线距离公式可理解为圆心到直线的距离,变形得,即所求问题可转化为两点到直线的距离和的倍,作于于,中点为,中点为,由梯形中位线性质可得,,作于,于,连接,则,当且仅当与重合,三点共线时,有最大值,由点到直线距离公式可得,由几何性质可得,,此时,故的最大值为.故答案为:10.14、##【解析】设,根据直线与圆的位置关系即可求出【详解】由于,设,所以点既在直线上,又在圆上,即直线与圆有交点,所以,,即故答案为:15、【解析】求出直线过的定点,当圆心和定点的连线垂直于直线时,取得最小值,结合即可求解.【详解】由题意知,圆,圆心,半径,直线,,,解得,故直线过定点,设圆心到直线的距离为,则,可知当距离最大时,有最小值,由图可知,时,最大,此时,此时.故的最小值为.故答案为:.16、【解析】根据题意可以设,求其导数可知在上的单调性,由是上的奇函数,可知的奇偶性,进而可知在上的单调性,由可知的零点,最后分类讨论即可.【详解】设,则对,,则在上为单调递增函数,∵函数是上的奇函数,∴,∴,∴偶函数,∴在上为单调递减函数,又∵,∴,由已知得,所以当时,;当时,;当时,;当时,;若,则;若,则或,解得或或;则的解集为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0(2)f(x)在(0,π)上有且只有一个零点,理由见解析【解析】(1)利用导数的几何意义求解;(2)由,可得,令,,,,利用导数法求解.【小问1详解】解:,所以k=f′(0)=-a=0,所以a=0;【小问2详解】由,可得,令,,所以,①当时,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上单调递增,又因为g(0)=0,所以g(x)在上无零点;②当时,令,所以h′(x)=2cosxex<0,即h(x)在上单调递减,又因为,h(π)=-eπ-1<0,所以存在,,所以g(x)在上单调递增,在上单调递减,因为,g(π)=-π<0,所以g(x)在上且只有一个零点;综上所述:f(x)在(0,π)上有且只有一个零点18、(1)周长为,面积为7.(2)或.【解析】(1)根据点,求出向量,利用向量的摸公式即可求出的距离,可以求出周长,再利用向量的夹角公式求出夹角的余弦值,根据平方关系得到正弦值,再利用即可求解;(2)首先设出,根据题意可得出的方程组,解出满足条件所有的值即可求解.【小问1详解】由题中条件可知,,,,.所以以为邻边的平行四边形的周长为.因为,因为,所以.所以.故以以为邻边的平行四边形的面积为:.【小问2详解】设,则,,因为,且分别与垂直,得,解得或所以向量的坐标为或.19、选择见解析;(1);(2)【解析】(1)选条件①.利用正弦定理边角互化,结合两角和的正弦公式可得,从而可得答案;选条件②.边角互化、切化弦,结合两角和的正弦公式可得,从而得答案;选条件③.边角互化,利用余弦定理可得,从而可得答案;(2)由三角形面积公式可得得,再利用余弦定理与基本不等式可得答案.【详解】(1)方案一:选条件①由可得,由正弦定理得,因为,所以,所以,故,又,于是,即,因为,所以方案二:选条件②因为,所以由正弦定理及同角三角函数的基本关系式,得,即,因为,所以,又,所以,因为,所以方案三:选条件③∵,∴,即,∴,∴又,所以(2)由题意知,得由余弦定理得,当且仅当且,即,时取等号,所以的最小值为20、(1)(2)【解析】(1)运用椭圆的离心率公式,结合椭圆的定义可得在椭圆上,代入椭圆方程,求出,,即可求椭圆的方程;(2)设出直线方程,联立直线和椭圆方程,利用根与系数之间的关系、以及向量数量积的坐标表示进行求解即可.【小问1详解】依题意得,点,满足,可得在椭圆上,可得:,且,解得,,所以椭圆的方程为;【小问2详解】设,,,,,,当时,,此时A,B关于y轴对称,则重心为,由得:,则,此时与椭圆不会有两交点,故不合题意,故;联立与椭圆方程,可得,可得,化为,,,①,设的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,则,,令,则,可得,,,.【点睛】本题主要考查椭圆的方程以及直线和椭圆的位置关系的应用,利用消元法转化为一元二次方程形式是解决本题的关键.21、(1);(2).【解析】(1)由题意知分数小于的产品为不合格品,故有件,一共有件口罩,即可求出口罩的不合格率.(2)先利用分层抽样确定抽取的件口罩中合格产品和不合格产品的数量分别为件和件,再利用古典概型把所有基本事件种都列举出来,在判断件口罩全是合格品的事件有种情况,即可得到答案.【小问1详解】在抽取的件产品中,不合格的口罩有(件)所以口
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新小学数学六年级下册《圆锥的体积》公开课获奖百校联赛教案
- 小学一年级语文教案中积累读中感悟雪地里的小画家教学设计及评点(2025-2026学年)
- 八年级上册英语第八单元获奖说课比赛教案(2025-2026学年)
- 金融犯罪知识教案
- 幼儿园大班音乐菜场教案
- 人教版小学二年级下册芛芽儿教案
- 高中数学空间直角坐标系示范教案新人教A版必修
- 细胞增殖课件经典
- 2026年证券分析师之发布证券研究报告业务考试题库300道(模拟题)
- 交通安全分心驾驶课件
- 垃圾压缩站运营维护管理标准方案
- 《常见抗凝剂分类》课件
- 2025运输与配送期末考试题库及答案
- 妇科TCT培训课件
- 妇科急症培训课件
- 2025年灌溉与排水工程考试试题及答案
- 抵押权概述课件
- 军事理论-综合版(新版)知到智慧树答案
- 护理礼仪情景剧课件模板
- 基因克隆技术课件教案
- 企业营收管理办法
评论
0/150
提交评论