版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市实验中学2026届高二上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且垂直于直线的直线方程为()A. B.C. D.2.已知数列满足:且,则此数列的前20项的和为()A.621 B.622C.1133 D.11343.已知,,则()A. B.C. D.4.某中学的校友会为感谢学校的教育之恩,准备在学校修建一座四角攒尖的思源亭如图它的上半部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30°,侧棱长为米,则以下说法不正确()A.底面边长为6米 B.体积为立方米C.侧面积为平方米 D.侧棱与底面所成角的正弦值为5.设等差数列的前n项和为.若,则()A.19 B.21C.23 D.386.已知函数的图象如图所示,则其导函数的图象大致形状为()A. B.C. D.7.已知椭圆,则下列结论正确的是()A.长轴长为2 B.焦距为C.短轴长为 D.离心率为8.执行如图所示的程序框图,若输入的的值为3,则输出的的值为()A.3 B.6C.9 D.129.设变量,满足约束条件则的最小值为()A.3 B.-3C.2 D.-210.等差数列的前项和为,若,,则()A.12 B.18C.21 D.2711.不等式的一个必要不充分条件是()A. B.C. D.12.执行如图所示的程序框图,若输入,则输出的m的值是()A.-1 B.0C.0.1 D.1二、填空题:本题共4小题,每小题5分,共20分。13.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.14.已知,若三个数成等差数列,则_________;若三个数成等比数列,则__________15.已知直线与平行,则实数的值为_____________.16.设、、是三个不同的平面,、是两条不同的直线,给出下列三个结论:①若,,则;②若,,则;③若,,则其中,正确结论的序号为__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,.(1)求的通项公式;(2)设,求数列的前项和.18.(12分)如图,在空间直角坐标系中有长方体,且,,点E在棱AB上移动.(1)证明:;(2)当E为AB的中点时,求直线AC与平面所成角的正弦值.19.(12分)如图1所示,在四边形ABCD中,,,,将△沿BD折起,使得直线AB与平面BCD所成的角为45°,连接AC,得到如图2所示的三棱锥(1)证明:平面ABD平面BCD;(2)若三棱锥中,二面角的大小为60°,求三棱锥的体积20.(12分)如图甲,在直角三角形中,已知,,,D,E分别是的中点.将沿折起,使点A到达点的位置,且,连接,得到如图乙所示的四棱锥,M为线段上一点.(1)证明:平面平面;(2)过B,C,M三点的平面与线段A'E相交于点N,从下列三个条件中选择一个作为已知条件,求直线DN与平面A'BC所成角的正弦值.①;②直线与所成角的大小为;③三棱锥的体积是三棱锥体积的注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.22.(10分)如图,五边形为东京奥运会公路自行车比赛赛道平面设计图,根据比赛需要,在赛道设计时需预留出,两条服务通道(不考虑宽度),,,,,为赛道.现已知,,千米,千米(1)求服务通道的长(2)在上述条件下,如何设计才能使折线赛道(即)的长度最大,并求最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【详解】因为所求直线垂直于直线,又直线的斜率为,所以所求直线的斜率,所以直线方程为,即.故选:A【点睛】本题主要考查直线方程的求法,属基础题.2、C【解析】这个数列的奇数项是公差为2的等差数列,偶数项是公比为2的等比数列,只要分开来计算即可.【详解】由于,所以当n为奇数时,是等差数列,即:共10项,和为;,共10项,其和为;∴该数列前20项的和;故选:C.3、C【解析】利用空间向量的坐标运算即可求解.【详解】因为,,所以,故选:C.4、D【解析】连接底面正方形的对角线交于点,连接,则为该正四棱锥的高,即平面,取的中点,连接,则的大小为侧面与底面所成,设正方形的边长为,求出该正四棱锥的底面边长,斜高和高,然后对选项进行逐一判断即可.【详解】连接底面正方形的对角线交于点,连接则为该正四棱锥的高,即平面取的中点,连接,由正四棱锥的性质,可得由分别为的中点,所以,则所以为二面角的平面角,由条件可得设正方形的边长为,则,又则,解得故选项A正确.所以,则该正四棱锥的体积为,故选项B正确.该正四棱锥的侧面积为,故选项C正确.由题意为侧棱与底面所成角,则,故选项D不正确.故选:D5、A【解析】由已知及等差数列的通项公式得到公差d,再利用前n项和公式计算即可.【详解】设等差数列的公差为d,由已知,得,解得,所以.故选:A6、A【解析】利用f(x)先单调递增的速度由快到慢,再由慢到快,结合导数的几何意义判断即可.【详解】由f(x)的图象可知,函数f(x)先单调递增的速度由快到慢,再由慢到快,由导数的几何意义可知,先减后增,且恒大于0,故符合题意的只有选项A.故选:A.7、D【解析】根据已知条件求得,由此确定正确答案.【详解】依题意椭圆,所以,所以长轴长为,焦距为,短轴长为,ABC选项错误.离心率为,D选项正确.故选:D8、A【解析】模拟执行程序框图,根据输入数据,即可求得输出数据.【详解】当时,不满足,故,即输出的的值为.故选:.9、D【解析】转化为,则最小即直线在轴上的截距最大,作出不等式组表示的可行域,数形结合即得解【详解】转化为,则最小即直线在轴上的截距最大作出不等式组表示的可行域如图中阴影部分所示,作出直线,平移该直线,当直线经过时,在轴上的截距最大,最小,此时,故选:D10、B【解析】根据等差数列的前项和为具有的性质,即成等差数列,由此列出等式,求得答案.【详解】因为为等差数列的前n项和,且,,所以成等差数列,所以,即,解得=18,故选:B.11、B【解析】解不等式,由此判断必要不充分条件.【详解】,解得,所以不等式的一个必要不充分条件是.故选:B12、B【解析】计算后,根据判断框直接判断即可得解.【详解】输入,计算,判断为否,计算,输出.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】写出,,求出,根据以及即可求解,【详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:14、①.4②.【解析】由等差中项与等比中项计算即可.【详解】若a,b,c三个数成等差数列.所以.若a,b,c三个数成等比数列.所以故答案为:4,.15、或【解析】根据平行线的性质进行求解即可.【详解】因为直线与平行,所以有:或,故答案为:或16、①②【解析】利用线面垂直的性质可判断命题①、②的正误;利用特例法可判断命题③的正误.综合可得出结论.【详解】、、是三个不同的平面,、是两条不同的直线.对于①,若,,由同垂直于同一平面的两直线平行,可得,故①正确;对于②,若,,由同垂直于同一直线的两平面平行,可得,故②正确;对于③,若,,考虑墙角处的三个平面两两垂直,可判断、相交,则不正确故答案为:①②【点睛】本题考查空间中线面、面面位置关系有关命题真假的判断,考查推理能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得.【小问1详解】解:设等差数列的公差为,则,可得,由可得,即,解得,,故.【小问2详解】解:,因此,.18、(1)证明见解析(2)【解析】(1)设,求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直线与平面所成角的正弦值【小问1详解】证明:设,,,,;【小问2详解】当为的中点时,,,设平面的法向量,则,取,得,设直线与平面所成角为,则直线与平面所成角的正弦值为:19、(1)证明见解析;(2).【解析】(1)过作面,连接,结合题设易知,根据过面外一点在该面上垂线性质知重合,再应用面面垂直的判定证明结论.(2)面中过作,结合题设构建空间直角坐标系,设并确定相关点坐标,求面、面法向量,应用空间向量夹角的坐标表示列方程求参数,最后由棱锥体积公式求体积.【小问1详解】由题设,易知:△是等腰直角三角形,即,将△沿BD折起过程中使直线AB与平面BCD所成的角为45°,此时过作面,连接,如下图示,所以,在△中,又且面,因为过平面外一点有且只有一条垂线段,故重合,此时面,又面,故平面ABD平面BCD;【小问2详解】在平面中过作,由(1)结论可构建如下图示的空间直角坐标系,由,,,若,则,故,,,若是面的一个法向量,则,若,则,若是面的一个法向量,则,若,则,所以,由二面角的大小为60°有,解得,故20、(1)证明见解析(2)【解析】(1)由线面垂直的判定定理及面面垂直的判定定理可得证;(2)分别选①,②,③可求得为的中点,再以为坐标原点,向量的方向分别为轴,轴,轴建立空间直角坐标系.利用空间向量求得所求的线面角.【小问1详解】分别为的中点,.,,.,,平面.又平面,∴平面平面.【小问2详解】(2)选①,;,,,,为的中点.选②,直线与所成角的大小为;,∴直线与所成角为.又直线与所成角的大小为,,,为的中点.选③,三棱锥的体积是三棱锥体积的,又,即,为的中点.∵过三点的平面与线段相交于点平面,平面.又平面平面,,为的中点.两两互相垂直,∴以为坐标原点,向量的方向分别为轴,轴,轴的正方向,建立如图所示的空间直角坐标系.则;.设平面的一个法向量为,直线与平面所成的角为.由,得.令,得.则.∴直线与平面所成角的正弦值为.21、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,,故,故.【点睛】圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北京协和医院变态(过敏)反应科合同制体外诊断试剂研发专员招聘备考题库及答案详解1套
- 2026年教育类电子竞技赛事教育内容植入合同
- 项目指挥部经验交流材料
- 甘肃电器科学研究院2025年度聘用制工作人员招聘备考题库完整答案详解
- 2025年深圳市优才人力资源有限公司公开招聘聘员(派遣至深圳市龙岗区工信局)的备考题库及一套答案详解
- js项目课程设计
- protel课程设计的意义
- 2025年永康市农业行政执法队招聘编外用工人员的备考题库及1套完整答案详解
- 2025年中国科学院力学研究所SKZ专项办公室人员招聘备考题库及完整答案详解一套
- 2025阿克苏市招聘警务辅助人员(117人)备考核心题库及答案解析
- 中考励志讲座课件
- 各部门环境因素识别评价表-塑胶公司
- 律所解除聘用协议书
- 海尔集团预算管理实践分析
- 永辉超市存货管理
- 10kV环网柜(箱)标准化设计方案(2023版)
- 余热发电岗前培训
- 变压器性能测试的实施方案
- 科技研发项目管理办法
- 重症胰腺炎个案护理
- (2025年标准)无租用车协议书
评论
0/150
提交评论