福建省福州市鼓楼区福州一中2026届数学高二上期末质量检测试题含解析_第1页
福建省福州市鼓楼区福州一中2026届数学高二上期末质量检测试题含解析_第2页
福建省福州市鼓楼区福州一中2026届数学高二上期末质量检测试题含解析_第3页
福建省福州市鼓楼区福州一中2026届数学高二上期末质量检测试题含解析_第4页
福建省福州市鼓楼区福州一中2026届数学高二上期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市鼓楼区福州一中2026届数学高二上期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的一个焦点坐标为,则实数m的值为()A.2 B.4C. D.2.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列3.若圆与圆相切,则的值为()A. B.C.或 D.或4.在数列中,已知,则“”是“是单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.设函数在上单调递减,则实数的取值范围是()A. B.C. D.6.已知点是椭圆上的一点,点,则的最小值为A. B.C. D.7.某公司有1000名员工,其中:高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工为800名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当抽取的一般员工人数为()A.100 B.15C.80 D.508.如图,是函数的部分图象,且关于直线对称,则()A. B.C. D.9.已知,,且,则向量与的夹角为()A. B.C. D.10.已知点到直线:的距离为1,则等于()A. B.C. D.11.命题“,”的否定是()A., B.,C, D.,12.已知数列为等比数列,,则的值为()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.设,分别是椭圆C:的左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________14.过圆上一点的圆的切线的一般式方程为________15.二项式的展开式中,项的系数为__________.16.长方体中,,,已知点H,A,三点共线,且,则点H到平面ABCD的距离为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围.18.(12分)已知圆的圆心在直线上,且经过点和.(1)求圆的标准方程;(2)若过点且斜率存在的直线与圆交于,两点,且,求直线的方程.19.(12分)已知椭圆的长轴长是,以其短轴为直径的圆过椭圆的左右焦点,.(1)求椭圆E的方程;(2)过椭圆E左焦点作不与坐标轴垂直的直线,交椭圆于M,N两点,线段MN的垂直平分线与y轴负半轴交于点Q,若点Q的纵坐标的最大值是,求面积的取值范围.20.(12分)已知函数.(1)设x=2是函数f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当时,.21.(12分)求适合下列条件的椭圆的标准方程:(1)经过点,;(2)长轴长是短轴长的3倍,且经过点22.(10分)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,.(1)证明:;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由焦点坐标得到,求解即可.【详解】根据焦点坐标可知,椭圆焦点在y轴上,所以有,解得故选:C.2、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题3、C【解析】分类讨论:当两圆外切时,圆心距等于半径之和;当两圆内切时,圆心距等于半径之差,即可求解.【详解】圆的圆心为,半径为,圆的圆心为,半径为.①当两圆外切时,有,此时.②当两圆内切时,有,此时.综上,当时两圆外切;当时两圆内切.故选:C【点睛】本题考查了圆与圆的位置关系,解答两圆相切问题时易忽略两圆相切包括内切和外切两种情况.解答时注意分类讨论,属于基础题.4、C【解析】分别求出当、“是单调递增数列”时实数的取值范围,利用集合的包含关系判断可得出结论.【详解】已知,若,即,解得.若数列是单调递增数列,对任意的,,即,所以,对任意的恒成立,故,因此,“”是“是单调递增数列”充要条件.故选:C.5、B【解析】分析可知,对任意的恒成立,由参变量分离法可得出,求出在时的取值范围,即可得出实数的取值范围.【详解】因为,则,由题意可知对任意的恒成立,则对任意的恒成立,当时,,.故选:B.6、D【解析】设,则,.所以当时,的最小值为.故选D.7、C【解析】按照比例关系,分层抽取.【详解】由题意可知,所以应当抽取的一般员工人数为.故选:C8、C【解析】先根据条件确定为函数的极大值点,得到的值,再根据图像的单调性和导数几何意义得到和的正负即可判断.【详解】根据题意得,为函数部分函数的极大值点,所以,又因为函数在单调递增,由图像可知处切线斜率为锐角,根据导数的几何意义,所以,又因为函数在单调递增,由图像可知处切线斜率为钝角,根据导数的几何意义所以.即.故选:C.9、B【解析】先求出向量与的夹角的余弦值,即可求出与的夹角.【详解】,所以,∴,∴,∴,又∵,∴与的夹角为.故选:B.10、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.11、D【解析】由含量词命题否定的定义,写出命题的否定即可【详解】命题“,”的否定是:,,故选:D.12、B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:14、【解析】求出过切线的半径所在直线斜率,由垂直关系得切线斜率,然后得直线方程,现化为一般式【详解】圆心为,,所以切线的斜率为,切线方程为,即故答案为:【点睛】本题考查求过圆上一点的圆的切线方程,利用切线性质求得斜率后易得直线方程15、80【解析】利用二项式的通项公式进行求解即可.【详解】二项式的通项公式为:,令,所以项的系数为,故答案为:8016、【解析】在长方体中,以点A为原点建立空间直角坐标系,利用已知条件求出点H的坐标作答.【详解】在长方体中,以点A为原点建立如图所示的空间直角坐标系,则,,因点H,A,三点共线,令,点,则,又,则,解得,所以点到平面ABCD的距离为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2).【解析】(1)对求导得到,分和进行讨论,判断出的正负,从而得到的单调性;(2)设函数,分和进行讨论,根据的单调性和零点,得到答案.【详解】解:(1)函数定义域是,,当时,,函数在单调递增,无减区间;当时,令,得到,即,所以,,单调递增,,,单调递减,综上所述,时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2)由已知在恒成立,令,,可得,则,所以在递增,所以,①当时,,在递增,所以成立,符合题意.②当时,,当时,,∴,使,即时,在递减,,不符合题意.综上得【点睛】本题考查利用导数讨论函数的单调性,根据导数解决不等式恒成立问题,属于中档题.18、(1)(2)【解析】(1)设圆心,由题意得,,结合两点间的距离公式求解的值,则圆心与半径可求,圆的方程可求;(2)若直线的斜率不存在,设直线的方程为,符合题意,若直线的斜率存在,设直线方程为,即,由圆心到直线的距离与半径关系求得,则直线方程可求【小问1详解】解:(1)设圆心,由题意得,,,解得.圆心坐标为,半径.则圆的方程为;【小问2详解】解:(2)直线的斜率存在时,设直线的方程为,即,,圆心到直线的距离,即,解得,得直线的方程为.19、(1);(2).【解析】(1)根据给定条件结合列式计算即可作答.(2)设出直线MN的方程,与椭圆方程联立并结合已知求出m的范围,再借助韦达定理求出面积函数,利用函数单调性计算作答.【小问1详解】令椭圆半焦距为c,依题意,,解得,所以椭圆E的方程为.【小问2详解】由(1)知,椭圆E左焦点为,设过椭圆E左焦点的直线为(存在且不为0),由消去x得,,设,则,线段的中点为,因此线段的垂直平分线为,由得的纵坐标为,依题意,且,解得,由(1)知,,,令,在上单调递减,当,即时,,当,即时,,所以面积的取值范围.【点睛】结论点睛:过定点的直线l:y=kx+b交圆锥曲线于点,,则面积;过定点直线l:x=ty+a交圆锥曲线于点,,则面积20、(1),的单调递减区间为,单调递增区间为;(2)证明见解析;【解析】(1)求出函数的定义域与导函数,依题意可得,即可求出参数的值,再根据导函数与函数的单调性的关系求出函数的单调区间;(2)依题意可得,令,即证,,又,所以即证,令,利用导数说明其单调性,即可得解;【详解】解:(1)因为,定义域为,所以,因为是函数的极值点,所以,所以,解得,所以,令,则,所以在上单调递增,又,所以当时,,即,所以在上单调递减,当时,,即,所以上单调递增,综上可得的单调递减区间为,单调递增区间为;(2)证明:依题意即证,即证,令,则,所以即证,因为,所以即证,令,则,所以当时,,当时,所以,所以,所以当时,21、(1);(2)或.【解析】(1)由已知可得,,且焦点在轴上,进而可得椭圆的标准方程;(2)由已知可得,,此时焦点在轴上,或,,此时焦点在轴上,进而可得椭圆的标准方程;【小问1详解】解:椭圆经过点,,,,,且焦点在轴上,椭圆的标准方程为.【小问2详解】解:长轴长是短轴长的3倍,且经过点,当点在长轴上时,,,此时焦点在轴上,此时椭圆的标准方程为;当点在短轴上时,,,此时焦点在轴上,此时椭圆的标准方程.综合得椭圆的方程为或.22、(1)证明见解析;(2)【解析】(1)要证,可证,由题意可得,,易证,从而平面,即有,从而得证;(2)取中点,根据题意可知,两两垂直,所以以点为坐标原点,建立空间直角坐标系,再分别求出向量和平面的一个法向量,即可根据线面角的向量公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论