版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都龙泉第二中学2026届高一上数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.根据表格中的数据可以判定方程的一个根所在的区间为()1234500.6931.0991.3861.60910123A. B.C. D.2.已知二次函数在区间(2,3)内是单调函数,则实数的取值范围是()A.或 B.C.或 D.3.函数的图像大致为()A. B.C. D.4.若函数的图象如图所示,则下列函数与其图象相符的是A. B.C. D.5.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2C.若a>b,ab<0,则1a>1b D.若a6.已知角终边上一点,则A. B.C. D.7.若函数与的图象关于直线对称,则的单调递增区间是()A. B.C. D.8.在北京召开的国际数学家大会的会标如图所示,它是由个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则A. B.C. D.9.若-4<x<1,则()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-110.命题“任意实数”的否定是()A.任意实数 B.存在实数C.任意实数 D.存实数二、填空题:本大题共6小题,每小题5分,共30分。11.将函数图象上所有点的横坐标压缩为原来的后,再将图象向左平移个单位长度,得到函数的图象,则的单调递增区间为____________12.已知,且,则实数的取值范围为__________13.下面有5个命题:①函数的最小正周期是②终边在轴上的角的集合是③在同一坐标系中,函数的图象和函数的图象有3个公共点④把函数的图象向右平移得到的图象⑤函数在上是减函数其中,真命题的编号是___________(写出所有真命题的编号)14.已知函数f(x)=,设a∈R,若关于x的不等式f(x)在R上恒成立,则a的取值范围是__15.在△ABC中,点满足,过点的直线与,所在直线分别交于点,,若,,,则的最小值为___________.16.设a>0且a≠1,函数fx三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算:;(2)已知,,求,的值.18.已知定义在上的函数是奇函数(1)求实数;(2)若不等式恒成立,求实数的取值范围19.函数(1)解不等式;(2)若方程有实数解,求实数的取值范围20.已知函数(1)求当f(x)取得最大值时,x的取值集合;(2)完成下列表格并在给定的坐标系中,画出函数f(x)在上的图象.xy21.已知函数.(1)在平面直角坐标系中画出函数的图象;(不用列表,直接画出草图.(2)根据图象,直接写出函数的单调区间;(3)若关于的方程有四个解,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】令,由表中数据结合零点存在性定理即可得解.【详解】令,由表格数据可得.由零点存在性定理可知,在区间内必有零点.故选C.【点睛】本题主要考查了零点存在性定理,属于基础题.2、A【解析】根据开口方向和对称轴及二次函数f(x)=x2-2ax+1的单调区间求参数的取值范围即可.【详解】根据题意二次函数f(x)=x2-2ax+1开口向上,单调递增区间为,单调减区间,因此当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调增函数时a≤2,当二次函数f(x)=x2-2ax+1在区间(2,3)内为单调减函数时a≥3,综上可得a≤2或a≥3.故选:A.3、A【解析】通过判断函数的奇偶性排除CD,通过取特殊点排除B,由此可得正确答案.【详解】∵∴函数是偶函数,其图像关于轴对称,∴排除CD选项;又时,,∴,排除B,故选.4、B【解析】由函数的图象可知,函数,则下图中对于选项A,是减函数,所以A错误;对于选项B,的图象是正确的;对C,是减函数,故C错;对D,函数是减函数,故D错误。故选B5、C【解析】根据不等式的性质或通过举反例,对四个选项进行分析【详解】A.若a>b,当c=0时,ac2=bB.若ac>bc,当c<0时,则C.因为ab<0,将a>b两边同除以ab,则1a>1D.若a2>b2且ab>0,当a<0b<0时,则a<b故选:C6、C【解析】由题意利用任意角的三角函数的定义,求得的值【详解】∵角终边上一点,∴,,,则,故选C【点睛】本题主要考查任意角的三角函数的定义,属于基础题7、C【解析】根据题意得,,进而根据复合函数的单调性求解即可.【详解】解:因为函数与的图象关于直线对称,所以,,因为的解集为,即函数的定义域为由于函数在上单调递减,在上单调递减,上单调递增,所以上单调递增,在上单调递减.故选:C8、C【解析】根据题意即可算出每个直角三角形面积,再根据勾股定理和面积关系即可算出三角形的两条直角边.从而算出【详解】由题意得直角三角形的面积,设三角形的边长分别为,则有,所以,所以,选C.【点睛】本题主要考查了三角形的面积公式以及直角三角形中,正弦、余弦的计算,属于基础题9、D【解析】先将转化为,根据-4<x<1,利用基本不等式求解.【详解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.当且仅当x-1=,即x=0时等号成立故选:D【点睛】本题主要考查基本不等式的应用,还考查了转化求解问题的能力,属于基础题.10、B【解析】根据含全称量词的命题的否定求解.【详解】根据含量词命题的否定,命题“任意实数”的否定是存在实数,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据函数图象的变换,求出的解析式,结合函数的单调性进行求解即可.【详解】由数图象上所有点的横坐标压缩为原来的后,得到,再将图象向左平移个单位长度,得到函数的图象,即令,函数的单调递增区间是由,得,的单调递增区间为.故答案为:12、【解析】,该函数的定义域为,又,故为上的奇函数,所以等价于,又为上的单调减函数,,也即是,解得,填点睛:解函数不等式时,要注意挖掘函数的奇偶性和单调性13、①④【解析】①,正确;②错误;③,和在第一象限无交点,错误;④正确;⑤错误.故选①④14、﹣≤a≤2【解析】先求画出函数的图像,然后对的图像进行分类讨论,使得的图像在函数的图像下方,由此求得的取值范围.【详解】画出函数的图像如下图所示,而,是两条射线组成,且零点为.将向左平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.将向右平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.根据图像可知【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如函数的图像,是引出的两条射线.15、3【解析】先利用条件找到,然后对减元,化为,利用基本不等式求最小值.【详解】,,,三点共线,.则当且仅当,即时等号成立.故答案为:3.【点睛】(1)在向量运算中:①构造向量加、减法的三角形法则和平行四边形法则;②树立“基底”意识,利用基向量进行线性运算;(2)基本不等式求最值要注意应用条件:“一正二定三相等”.16、1,0【解析】令指数为0即可求得函数图象所过的定点.【详解】由题意,令x-1=0⇒x=1,y=1-1=0,则函数的图象过定点(1,0).故答案为:(1,0).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据指数运算与对数运算的法则计算即可;(2)先根据指对数运算得,进而,再将其转化为求解即可.【详解】解:(1)原式==(2)∴,,化为:,,解得∴18、(1)1(2)【解析】(1)根据奇函数的性质,,求参数后,并验证;(2)结合函数单调性和奇函数的性质,不等式变形得恒成立,再根据判别式求实数的取值范围【小问1详解】∵是定义域为的奇函数,∴,∴,则,满足,所以成立.【小问2详解】中,函数单调递减,单调递增,故在上单调递增原不等式化为,∴即恒成立,∴,解得19、(1)(2)【解析】(1)由,根据对数的单调性可得,然后解指数不等式即可.(2)由实数根,化为有实根,令,有正根即可,对称轴,开口向上,只需即可求解.【详解】(1)由,即,所以,,解得所以不等式的解集为.(2)由实数根,即有实数根,所以有实根,两边平方整理可得令,且,由题意知有大于根即可,即,令,,故故.故实数的取值范围.【点睛】本题考查了利用对数的单调性解不等式、根据对数型方程的根求参数的取值范围,属于中档题.20、(1);(2)图象见解析.【解析】(1)利用整体法求解三角函数最大值时x的取值集合;(2)填写表格,并作图.【小问1详解】由,得故当f(x)取得最大值时,x的取值集合为【小问2详解】函数f(x)在上的图象如下:x0y0221、(1)作图见解析;(2)增区间为和;减区间为和;(3).【解析】(1)化简函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中山大学附属第三医院2026年合同人员招聘备考题库完整答案详解
- 2026年工程进度控制合同
- 2025年湖南省中西医结合医院湖南省中医药研究院附属医院高层次人才公开招聘13人备考题库带答案详解
- 2026年废灭蚁灵污染易发区保护保险合同中
- 2026年湿地公园保护保险合同中
- 2025年中国航空工业集团有限公司招聘备考题库带答案详解
- 2025年上饶市广信区人民法院公开招聘劳务派遣工作人员14人备考题库及参考答案详解
- 2026年兴业银行海口分行秋季校园招聘备考题库及参考答案详解一套
- 2025 九年级语文下册戏剧矛盾冲突设计课件
- 2025湖南长沙市食品药品检验所公开招聘编外合同制人员12人备考核心题库及答案解析
- 林业和草原局护林员招聘考试《森林资源管护》题库(答案+解析)
- 中华人民共和国职业分类大典是(专业职业分类明细)
- 电子票据管理办法医院
- 云南省曲靖市麒麟区2023年小升初数学试卷
- 电子承兑支付管理办法
- 安徽旧锅炉拆除合同范本
- 学堂在线 雨课堂 学堂云 知识产权法 章节测试答案
- 全检员考试试题及答案
- 医院搬迁整体方案
- 湖南涉外经济学院《高等数学》2024-2025学年期末试卷(A卷)含答案
- 提高住院患者围手术期健康宣教知晓率品管圈活动报告
评论
0/150
提交评论