版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省遂宁中学2026届高二数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数,则对应的点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限2.已知长方体中,,,则直线与所成角的余弦值是()A. B.C. D.3.已知正方体的棱长为1,且满足,则的最小值是()A. B.C. D.4.元朝著名的数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走.遇店添一倍,逢友饮一斗.”基于此情景,设计了如图所示的程序框图,若输入的,输出的,则判断框中可以填()A. B.C. D.5.已知直线和圆相交于两点.若,则的值为()A. B.C. D.6.设命题,则为()A. B.C. D.7.“”是“直线和直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.设等差数列前n项和是,若,则的通项公式可以是()A. B.C. D.9.在正方体中,与直线和都垂直,则直线与的关系是()A.异面 B.平行C.垂直不相交 D.垂直且相交10.下列双曲线中,以为一个焦点,以为一个顶点的双曲线方程是()A. B.C. D.11.已知椭圆的一个焦点坐标为,则的值为()A.1 B.3C.9 D.8112.在长方体中,,,则异面直线与所成角的正弦值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.无穷数列满足:只要必有则称为“和谐递进数列”.已知为“和谐递进数列”,且前四项成等比数列,,则=_________.14.已知双曲线的右焦点为,过点作轴的垂线,在第一象限与双曲线及其渐近线分别交于,两点.若,则双曲线的离心率为___________.15.已知函数,若在定义域内有两个零点,那么实数a的取值范围为___________.16.已知数列的前项和为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)当时,求函数在内的零点个数.18.(12分)已知等差数列的首项为2,公差为8.在中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列.(1)求数列的通项公式;(2)若,,,,是从中抽取的若干项按原来的顺序排列组成的一个等比数列,,,令,求数列的前项和.19.(12分)已知圆:,过圆外一点作圆的两条切线,,,为切点,设为圆上的一个动点.(1)求的取值范围;(2)求直线的方程.20.(12分)已知函数,.(1)若,求的最大值;(2)若,求证:有且只有一个零点.21.(12分)已知点,,线段是圆的直径.(1)求圆的方程;(2)过点的直线与圆相交于,两点,且,求直线的方程.22.(10分)已知椭圆,直线.(1)若直线与椭圆相切,求实数的值;(2)若直线与椭圆相交于A、两点,为线段的中点,为坐标原点,且,求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】化简复数,根据复数的几何意义,即可求解.【详解】由题意,复数,所以复数对应的点为位于第三象限.故选:C.2、C【解析】建立空间直角坐标系,设直线与所成角为,由求解.【详解】∵长方体中,,,∴分别以,,为,,轴建立如图所示空间直角坐标系,,则,,,,所以,,设直线与所成角为,则,∴直线和夹角余弦值是.故选:C.3、C【解析】由空间向量共面定理可得点四点共面,从而将求的最小值转化为求点到平面的距离,再根据等体积法计算.【详解】因为,由空间向量的共面定理可知,点四点共面,即点在平面上,所以的最小值为点到平面的距离,由正方体棱长为,可得是边长为的等边三角形,则,,由等体积法得,,所以,所以的最小值为.故选:C【点睛】共面定理的应用:设是不共面的四点,则对空间任意一点,都存在唯一的有序实数组使得,说明:若,则四点共面.4、D【解析】根据程序框图的算法功能,模拟程序运行即可推理判断作答.【详解】由程序框图知,直到型循环结构,先执行循环体,条件不满足,继续执行循环体,条件满足跳出循环体,则有:当第一次执行循环体时,,,条件不满足,继续执行循环体;当第二次执行循环体时,,,条件不满足,继续执行循环体;当第三次执行循环体时,,,条件不满足,继续执行循环体;当第四次执行循环体时,,,条件不满足,继续执行循环体;当第五次执行循环体时,,,条件满足,跳出循环体,输出,于是得判断框中的条件为:,所以判断框中可以填:.故选:D5、C【解析】求出圆心到直线的距离,再利用,化简求值,即可得到答案.【详解】圆的圆心为,圆心到直线的距离公式为,故故选:C.6、D【解析】利用含有一个量词的命题的否定的定义判断.【详解】因为命题是全称量词命题,所以其否定是存在量词命题,即,故选:D7、A【解析】因为直线和直线垂直,所以或,再根据充分必要条件的定义判断得解.【详解】因为“直线和直线垂直,所以或.当时,直线和直线垂直;当直线和直线垂直时,不一定成立.所以是直线和直线垂直的充分不必要条件,故选:A8、D【解析】根据题意可得公差的范围,再逐一分析各个选项即可得出答案.【详解】解:设等差数列的公差为,由,得,所以,故AB错误;若,则,与题意矛盾,故C错误;若,则,符合题意.故选:D.9、B【解析】以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,根据向量垂直的坐标表示求出,再利用向量的坐标运算可得,根据共线定理即可判断.【详解】设正方体的棱长为1.以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,则.设,则,取.,.故选:B【点睛】本题考查了空间向量垂直的坐标表示、空间向量的坐标表示、空间向量共线定理,属于基础题.10、C【解析】设出双曲线方程,根据题意,求得,即可选择.【详解】因为双曲线的一个焦点是,故可设双曲线方程为,且;又为一个顶点,故可得,解得,则双曲线方程为:.故选:.11、A【解析】根据条件,利用椭圆标准方程中长半轴长a,短半轴长b,半焦距c关系列式计算即得.【详解】由椭圆的一个焦点坐标为,则半焦距c=2,于是得,解得,所以值为1.故选:A12、C【解析】连接,可得,得到异面直线与所成角即为直线与所成角,设,设,求得的值,在中,利用余弦定理,即可求解.【详解】如图所示,连接,在正方体中,可得,所以异面直线与所成角即为直线与所成角,设,由在长方体中,,,设,可得,在直角中,可得,在中,可得,所以,因为,所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、7578【解析】根据新定义得数列是周期数列,从而易求得【详解】∵成等比数列,,∴,又,为“和谐递进数列”,∴,,,,…,∴数列是周期数列,周期为4∴故答案为:757814、【解析】按题意求得,两点坐标,以代数式表达出条件,即可得到关于的关系式,进而解得双曲线的离心率.【详解】双曲线的右焦点为,其渐近线为,垂线方程为,则,,,由,得,即即,则,离心率故答案为:15、【解析】先求定义域,再求导,针对分类讨论,结合单调性,极值,最值得到,研究其单调性及其零点,求出结果.【详解】定义域为,,当时,恒成立,在单调递减,不会有两个零点,故舍去;当时,在上,单调递增,在上,单调递减,故,又因为时,,时,,故要想在定义域内有两个零点,则,令,,,单调递增,又,故当时,.故答案为:16、【解析】根据题意求得,得到,利用等差数列的求和公式,求得,结合裂项法求和法,即可求解.【详解】由,可得,即,因为,所以,又因为,所以,可得,所以,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当,在单调递增;当,在单调递增,在单调递减.(2)0.【解析】(1)求得,对参数分类讨论,即可由每种情况下的正负确定函数的单调性;(2)根据题意求得,利用进行放缩,只需证即,再利用导数通过证明从而得到恒成立,则问题得解.【小问1详解】以为,其定义域为,又,故当时,,在单调递增;当时,令,可得,且令,解得,令,解得,故在单调递增,在单调递减.综上所述:当,在单调递增;当,在单调递增,在单调递减.【小问2详解】因为,故可得,则,;下证恒成立,令,则,故在单调递减,又当时,,故在恒成立,即;因为,故,令,下证在恒成立,要证恒成立,即证,又,故即证,令,则,令,解得,此时该函数单调递增,令,解得,此时该函数单调递减,又当时,,也即;令,则,令,解得,此时该函数单调递减,令,解得,此时该函数单调递增,又当时,,也即;又,故恒成立,则在恒成立,又,故当时,恒成立,则在上的零点个数是.【点睛】本题考察利用导数研究含参函数的单调性,以及函数零点问题的处理;本题第二问处理的关键是通过分离参数和构造函数,证明恒成立,属综合困难题.18、(1);(2)【解析】(1)由题意在中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列,可知的公差,进而可求出其通项公式;(2)根据题意可得,进而得到,再代入中得,利用错位相减即可求出前项和.【小问1详解】由于等差数列的公差为8,在中每相邻两项之间插入三个数,使它们与原数列的项一起构成一个新的等差数列,则的公差,的首项和首项相同为2,则数列的通项公式为.【小问2详解】由于,是等比数列的前两项,且,,则,则等比数列的公比为3,则,即,.①.②.①减去②得..19、(1)(2)【解析】(1)求出PM,就可以求PQ的范围;(2)使用待定系数法求出切线的方程,再求求切点的坐标,从而可以求切点的连线的方程.【小问1详解】如下图所示,因为圆的方程可化为,所以圆心,半径,且,所以,故取值范围为.【小问2详解】可知切线,中至少一条的斜率存在,设为,则此切线为即,由圆心到此切线的距离等于半径,即,得所以两条切线的方程为和,于是由联立方程组得两切点的坐标为和所以故直线的方程为即20、(1)(2)证明见解析【解析】(1)利用导数判断原函数单调性,从而可求最值.(2)求导后发现导数中无参数,故单调性与(1)中所求一致,然后利用零点存在定理结合的范围,以及函数单调性证明在定义域内有且只有一个零点.【小问1详解】若,则,其定义域为,∴,由,得,∴当时,;当时,,∴在上单调递增,在上单调递减,∴【小问2详解】证明:,由(Ⅰ)知在上单调递增,在上单调递诚,∵,∴当时,,故在上无零点;当时,,∵且,∴在上有且只有一个零点.综上,有且只有一个零点.21、(1);(2)或.【解析】(1)AB两点的中点为圆心,AB两点距离的一半为半径;(2)分斜率存在和不存在,根据垂径定理即可求解.【小问1详解】已知点,,线段是圆M的直径,则圆心坐标为,∴半
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 菏泽生物医药职业学院《形势与政策》2023-2024学年第一学期期末试卷
- 心内科护理职业发展
- 2025年福建省体育局直属事业单位面向退役运动员公开招聘工作人员13人备考题库及完整答案详解一套
- 护理安全:为生命护航为健康护航
- 租赁合同拆迁协议
- 网加盟协议书范本
- 小区栽树合同范本
- 床位装修合同范本
- 工程分包位协议书
- 仓储承包协议书
- 2025年嫩江市招聘农垦社区工作者(88人)笔试备考试题附答案详解(基础题)
- 2025年驾考科目三安全考试题库
- 熔盐储热技术原理
- IATF16949中英文对照版2025-10-13新版
- 肩关节脱位的护理
- 电子商务数据分析-数据采集
- 2025年保安员资格考试题目及答案(共100题)
- 大学家属院物业管理办法
- 防火、防爆、防雷、防静电课件
- 海选活动策划方案
- 经济法学-003-国开机考复习资料
评论
0/150
提交评论