版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江西省南昌市进贤一中数学高一上期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.满足不等式成立的的取值集合为()A.B.C.D.2.已知,则A.2 B.7C. D.63.已知,,且,则的最小值为()A.2 B.3C.4 D.84.下列函数中,与函数的奇偶性相同,且在上单调性也相同的是A. B.C. D.5.设,,,则A. B.C. D.6.函数的部分图像为()A. B.C. D.7.若第三象限角,且,则()A. B.C. D.8.已知,,,则()A. B.C. D.9.已知,,,则()A. B.C. D.210.如图,在平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的表面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数,的图象恒过定点P,则P点的坐标是_____.12.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马,底面,,,,则此阳马的外接球的表面积为______.13.放射性物质镭的某种同位素,每经过一年剩下的质量是原来的.若剩下的质量不足原来的一半,则至少需要(填整数)____年.(参考数据:,)14.已知函数若,则实数的值等于________15.已知实数满足,则________16.已知幂函数在为增函数,则实数的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量,,,且,.(1)求和:(2)若,,求向量与向量夹角的大小.18.已知函数的部分图象如下图所示(1)求函数的解析式;(2)讨论函数在上的单调性19.已知函数,.设函数.(1)求函数的定义域;(2)判断奇偶性并证明;(3)当时,若成立,求x的取值范围.20.已知点,,.(1)若,求的值;(2)若,其中为坐标原点,求的值.21.某厂商计划投资生产甲、乙两种商品,经市场调研发现,如图所示,甲、乙商品的投资x与利润y(单位:万元)分别满足函数关系与(1)求,与,的值;(2)该厂商现筹集到资金20万元,如何分配生产甲、乙商品的投资,可使总利润最大?并求出总利润的最大值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先求出一个周期内不等式的解集,再结合余弦函数的周期性即可求解.【详解】解:由得:当时,因为的周期为所以不等式的解集为故选:A.2、A【解析】先由函数解析式求出,从而,由此能求出结果【详解】,,,故选A【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.当出现的形式时,应从内到外依次求值3、C【解析】根据条件,变形后,利用均值不等式求最值.【详解】因为,所以.因为,,所以,当且仅当,时,等号成立,故的最小值为4.故选:C4、A【解析】先判断函数为偶函数,且在上单调递增,再依次判断每个选项的奇偶性和单调性得到答案.【详解】易知:函数为偶函数,且在上单调递增A.,函数为偶函数,且当时单调递增,满足;B.为偶函数,且当时单调递减,排除;C.函数为奇函数,排除;D.,函数为非奇非偶函数,排除;故选:【点睛】本题考查了函数的单调性和奇偶性,意在考查学生对于函数性质的综合应用.5、B【解析】本题首先可以通过函数的性质判断出和的大小,然后通过对数函数的性质判断出与的大小关系,最后即可得出结果【详解】因为函数是增函数,,,所以,因为,所以,故选B【点睛】本题主要考查了指数与对数的相关性质,考查了运算能力,考查函数思想,体现了基础性与应用性,考查推理能力,是简单题6、D【解析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D7、D【解析】由已知结合求出即可得出.【详解】因为第三象限角,所以,因为,且,解得或,则.故选:D.8、A【解析】比较a、b、c与中间值0和1的大小即可﹒【详解】,,,∴﹒故选:A﹒9、D【解析】利用同角三角函数关系式可求,再应用和角正切公式即求.【详解】∵,,∴,,∴.故选:D.10、B【解析】由题意,的中点就是球心,求出球的半径,即可得到球的表面积【详解】解:由题意,四面体顶点在同一个球面上,和都是直角三角形,所以的中点就是球心,所以,球的半径为:,所以球的表面积为:故选B【点睛】本题是基础题,考查四面体的外接球的表面积的求法,找出外接球的球心,是解题的关键,考查计算能力,空间想象能力二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.12、【解析】将该几何体放入长方体中,即可求得外接球的半径,再由球的表面积公式即可得解.【详解】将该几何体放入长方体中,如图,易知该长方体的长、宽、高分别为、、,所以该几何体的外接球半径,所以该球的表面积.故答案为:.13、【解析】设所需的年数为,由已知条件可得,解该不等式即可得结论.【详解】设所需的年数为,由已知条件可得,则.因此,至少需要年.故答案为:.14、-3【解析】先求,再根据自变量范围分类讨论,根据对应解析式列方程解得结果.【详解】当a>0时,2a=-2解得a=-1,不成立当a≤0时,a+1=-2,解得a=-3【点睛】求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.15、4【解析】方程的根与方程的根可以转化为函数与函数交点的横坐标和函数与函数交点的横坐标,再根据与互为反函数,关于对称,即可求出答案.【详解】,,令,,此方程的解即为函数与函数交点的横坐标,设为,如下图所示;,此方程的解即为函数与函数交点的横坐标,设为,如下图所示,与互反函数,关于对称,联立方程,解得,即,.故答案为:4.16、4【解析】根据幂函数的定义和单调性,即可求解.【详解】解:为递增的幂函数,所以,即,解得:,故答案为:4三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)本题首先可根据、得出,然后通过计算即可得出结果;(2)本题首先可根据题意得出以及,然后求出、以及的值,最后根据向量的数量积公式即可得出结果.【详解】(1)因为,,,且,,所以,解得,故,.(2)因为,,所以,因为,,所以,,,,设与的夹角为,则,因为,所以,向量与向量的夹角为.【点睛】本题考查向量平行、向量垂直以及向量的数量积的相关性质,若、且,则,考查通过向量的数量积公式求向量的夹角,考查计算能力,是中档题.18、(1)(2)在,上单调递减,在,和,上单调递增【解析】(1)由图知,,最小正周期,由,求得的值,再将点,代入函数的解析式中,求出的值,即可;(2)由,,知,,再结合正弦函数的单调性,即可得解【小问1详解】解:由图知,,最小正周期,因为,所以,将点,代入函数的解析式中,得,所以,,即,,因为,所以,故函数的解析式为;【小问2详解】解:因为,,所以,,令,则,,因为函数在,上单调递减,在,和,上单调递增,令,得,令,得,令,得,所以在,上单调递减,在,和,上单调递增19、(1);(2)奇函数,证明见解析;(3).【解析】(1)根据对数函数真数大于0,建立不等式组求解即可;(2)根据奇函数的定义判断即可;(3)根据对数函数的单调性解不等式求解即可.【详解】(1)由,解得,所以函数的定义域为.(2)是奇函数.证明如下:,都有,∴是奇函数.(3)由可得,得,由对数函数的单调性得,解得解集为.20、(1);(2).【解析】(1)因为,,,所以,.因为所以,化简即可得的值;(2)因为,,所以,因为,所以,平方即可求得的值.试题解析:(1)因为,,,所以,.因为所以.化简得因为(若,则,上式不成立).所以.(2)因为,,所以,因,所以,所以,所以,,因为,所以,故.21、(1),,,(2)分配生产乙商品的投资为1万元,甲商品的投资为万元,此时总利润的最大值为31.5万元.【解析】(1)代入点的坐标,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年沈阳金融商贸经济技术开发区管理委员会运营公司招聘考试真题
- 2024年四川农商银行招聘考试真题
- 南平绿发集团有限公司招聘考试真题2024
- 2025年中国标准化研究院政府管理创新标准化研究所企业编制职工招聘备考题库及参考答案详解一套
- 浙江2025年民生银行温州分行社会招聘备考题库及参考答案详解一套
- 2025湖南长沙市天心区龙湾小学教师招聘2人考试备考题库及答案解析
- 2025国防科技大学某学院社会招聘行政助理笔试重点题库及答案解析
- 2025贵州六枝特区公共汽车运输公司面向社会招聘驾驶员16人考试核心试题及答案解析
- 2025年滨州市检察机关公开招聘聘用制书记员52人备考题库及参考答案详解
- 2025恒丰银行上海分行社会招聘29人考试核心题库及答案解析
- 产品质量检验标准化操作规程及模板
- 2025年江苏省《保安员资格证考试》考试题库含答案
- 阴阳五行与人体课件
- 发展心理学-终结性考核-国开(GS)-参考资料
- 2025年秋季学期国家开放大学《宪法学》形考任务1-4答案
- 员工喝酒合同协议书
- 2025陕西三秦环保科技股份有限公司经理层成员市场化选聘工作5人考试笔试参考题库附答案解析
- 2025年采购人员个人年终总结6篇
- 白蛋白肽的课件
- 2026民航华北空管局招聘44人考试笔试参考题库附答案解析
- 2025-2026学年人教版(新教材)小学数学三年级上册期末考试模拟试卷及答案(三套)
评论
0/150
提交评论