版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省昌乐一中2026届高一数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R2.集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},则A∩B等于()A. B.C. D.,3.终边在x轴上的角的集合为()A. B.C. D.4.已知,且,则的最小值为()A.3 B.4C.5 D.65.已知函数的上单调递减,则的取值范围是()A. B.C. D.6.已知函数是定义在上的奇函数,,且,则()A. B.C. D.7.已知函数是定义在上奇函数.且当时,,则的值为A. B.C. D.28.已知函数,则,()A.4 B.3C. D.9.已知圆方程为,过该圆内一点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是()A.4 B.C.6 D.10.不等式对一切恒成立,则实数a的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数是以4为周期的周期函数,且时,,则__________12.在中,已知是延长线上一点,若,点为线段的中点,,则_________13.如图,矩形的三个顶点分别在函数,,的图像上,且矩形的边分别平行于两坐标轴.若点的纵坐标为2,则点的坐标为______.14.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.15.若直线与互相垂直,则点到轴的距离为__________16.已知,则的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数当时,求函数的零点;若,当时,求x的取值范围18.已知函数的最小正周期为,再从下列两个条件中选择一个作为已知条件:条件①:的图象关于点对称;条件②:的图象关于直线对称(1)请写出你选择的条件,并求的解析式;(2)在(1)的条件下,当时,求的最大值和最小值,并指出相应的取值注;如果选择条件①和条件②分别解答,按第一个解答计分19.已知函数(常数).(1)当时,用定义证明在区间上是严格增函数;(2)根据的不同取值,判断函数的奇偶性,并说明理由;(3)令,设在区间上的最小值为,求的表达式.20.已知函数与.(1)判断的奇偶性;(2)若函数有且只有一个零点,求实数a的取值范围.21.已知集合,集合(1)求;(2)设集合,若,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理2、A【解析】由得,得,则,故选A.3、B【解析】利用任意角的性质即可得到结果【详解】终边在x轴上,可能为x轴正半轴或负半轴,所以可得角,故选B.【点睛】本题考查任意角的定义,属于基础题.4、C【解析】依题意可得,则,再利用基本不等式计算可得;【详解】解:因为且,所以,所以当且仅当,即,时取等号;所以的最小值为故选:C【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题6、C【解析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值【详解】∵是奇函数,∴,又,∴是周期函数,周期为4∴故选:C7、B【解析】化简,先求出的值,再根据函数奇偶性的性质,进行转化即可得到结论【详解】∵,∴,是定义在上的奇函数,且当时,,∴,即,故选B【点睛】本题主要考查函数值的计算,考查了对数的运算以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题8、D【解析】根据分段函数解析式代入计算可得;【详解】解:因为,,所以,所以故选:D9、C【解析】由圆的方程可知圆心为,半径,则过圆内一点的最长弦为直径,最短弦为该点与圆心连线的垂线段,进而求解即可【详解】由题,圆心为,半径,过圆内一点的最长弦为直径,故;当时,弦长最短,因为,所以,因为在直径上,所以,所以四边形ABCD的面积是,故选:C【点睛】本题考查过圆内一点弦长的最值问题,考查两点间距离公式的应用,考查数形结合思想10、B【解析】当时,得到不等式恒成立;当时,结合二次函数的性质,列出不等式组,即可求解.【详解】由题意,不等式对一切恒成立,当时,即时,不等式恒成立,符合题意;当时,即时,要使得不等式对一切恒成立,则满足,解得,综上,实数a的取值范围是.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、##0.5【解析】利用周期和分段函数的性质可得答案.【详解】,.故答案为:.12、【解析】通过利用向量的三角形法则,以及向量共线,代入化简即可得出【详解】解:∵()(),∴λ,∴故答案为【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题13、【解析】先利用已知求出的值,再求点D的坐标.【详解】由图像可知,点在函数的图像上,所以,即.因为点在函数的图像上,所以,.因为点在函数的图像上,所以.又因为,,所以点的坐标为.故答案为【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.14、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.15、或.【解析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.16、##【解析】根据给定条件结合二倍角的正切公式计算作答.【详解】因,则,所以的值为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】由分段函数解析式可得时无零点;讨论,,解方程即可得到所求零点;求得的解析式,讨论,,解不等式组即可得到所求范围【详解】解:函数,可得时,无解;当时,无解;当时,即,可得;综上可得时,无零点;时,零点为;,,当时,即有或,可得或且,综上可得x的范围是【点睛】本题考查分段函数、函数零点和解不等式等知识,属于中档题18、(1);(2)时,有最小值,时,有最大值2.【解析】(1)若选①,根据周期求出,然后由并结合的范围求出,最后求出答案;若选②,根据周期求出,然后由并结合的范围求出,最后求出答案;(2)结合(1),先求出的范围,然后结合正弦函数的性质求出答案.【小问1详解】若选①,由题意,,因为函数的图象关于点对称,所以,而,则,于是.若选②,由题意,,因为函数的图象关于直线对称,所以,而,则,于是.【小问2详解】结合(1),因为,所以,则当时,有最小值为,当时,有最大值为.19、(1)证明见解析(2)当时,奇函数;当时,非奇非偶函数,理由见解析.(3)【解析】(1)当时,得到函数,利用函数单调性的定义,即可作出证明;(2)分和两种情况,结合函数的奇偶性的定义,即可得出结论.(3)根据正负性,结合具体类型的函数的单调性,进行分类讨论可以求出的表达式;【小问1详解】当时,函数,设且,则,因为,可得又由,可得,所以所以,即,所以函数是上是严格增函数.【小问2详解】由函数的定义域为关于原点对称,当时,函数,可得,此时函数为奇函数;当时,,此时且,所以时,函数为非奇非偶函数.【小问3详解】,当时,,函数在区间的最小值为;当时,函数的对称轴为:.若,在区间的最小值为;若,在区间的最小值为;若,在区间的最小值为;当时,,在区间的最小值为.综上所述:;20、(1)偶函数(2)【解析】(1)根据奇偶性定义判断;(2)函数只有一个零点,转化为方程只有一个根,用换元法转化为二次方程只有一个正根(或两个相等正根),再根据二次方程根分布分类讨论可得小问1详解】∵的定义域为R,∴,∴为偶函数.【小问2详解】函数只有一个零点即即方程有且只有一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年江苏省南京市单招职业适应性测试题库参考答案详解
- 2026年江西省鹰潭市单招职业适应性测试题库带答案详解
- 2026年张家口职业技术学院单招职业技能考试题库及参考答案详解
- 2026年兰州外语职业学院单招职业适应性测试题库及答案详解1套
- 2026年黑龙江省大兴安岭地区单招职业适应性测试题库带答案详解
- clr窗体课程设计
- 2026年扬州市职业大学单招职业倾向性考试题库带答案详解
- 2026年丽水学院单招职业倾向性考试题库及参考答案详解1套
- web课程设计c 源码
- 2026年毕节幼儿师范高等专科学校单招职业适应性考试题库及参考答案详解一套
- 医院设计培训课件
- 2025年变电检修笔试题及答案
- 如何调解婚姻家庭纠纷讲座
- 重大活动网络安全保障方案
- 含酚污水处理操作规程
- 江苏省苏州市吴中学、吴江、相城区2024-2025学年化学九上期末质量检测模拟试题含解析
- 建筑公司发展策划方案
- 教育培训销售管理制度及主要工作流程
- 机械进出场管理制度
- 2025年春季学期国开电大专本科《计算机应用基础》平台在线形考任务试题及答案+2025年国家开放大学国开电大《马克思主义基本原理》专题测试
- 瓷砖考试题及答案
评论
0/150
提交评论