版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省南阳市内乡县高中2026届高一数学第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的定义域为,则函数的定义域为()A. B.C. D.2.下图记录了某景区某年月至月客流量情况:根据该折线图,下列说法正确的是()A.景区客流量逐月增加B.客流量的中位数为月份对应的游客人数C.月至月的客流量情况相对于月至月波动性更小,变化比较平稳D.月至月的客流量增长量与月至月的客流量回落量基本一致3.若集合,则()A. B.C. D.4.设f(x)为偶函数,且在区间(-∞,0)上是增函数,,则xf(x)<0解集为()A.(-1,0)∪(2,+∞) B.(-∞,-2)∪(0,2)C.(-2,0)∪(2,+∞) D.(-2,0)∪(0,2)5.已知函数,则()A. B.C. D.6.()A.0 B.1C.6 D.7.已知平面直角坐标系中,的顶点坐标分别为、、,为所在平面内的一点,且满足,则点的坐标为()A. B.C. D.8.在正方体中,分别是的中点,则直线与平面所成角的余弦值为A. B.C. D.9.已知集合,集合与的关系如图所示,则集合可能是()A. B.C. D.10.下列命题中正确的个数是()①两条直线,没有公共点,那么,是异面直线②若直线上有无数个点不在平面内,则③空间中如果两个角的两边分别对应平行,那么这两个角相等或互补④若直线与平面平行,则直线与平面内的任意一条直线都没有公共点A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线与互相垂直,则点到轴的距离为__________12.已知幂函数在上单调递减,则___________.13.已知等差数列的前项和为,,则__________14.已知集合,,则___________.15.函数的定义域是________16.给出下列四个结论:①函数是奇函数;②将函数的图象向右平移个单位长度,可以得到函数的图象;③若是第一象限角且,则;④已知函数,其中是正整数.若对任意实数都有,则的最小值是4其中所有正确结论的序号是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是上的偶函数,且当时,.(1)求的值;(2)求函数的表达式,并直接写出其单调区间(不需要证明);(3)若,求实数的取值范围.18.已知:,.设函数求:(1)的最小正周期;(2)的对称中心,(3)若,且,求19.人类已进入大数据时代.目前数据量已经从级别越升到,,乃至级别.某数据公司根据以往数据,整理得到如下表格:时间2008年2009年2010年2011年2012年间隔年份(单位:年)01234全球数据量(单位:)0.50.751.1251.68752.53125根据上述数据信息,经分析后发现函数模型能较好地描述2008年全球产生的数据量(单位:)与间隔年份(单位:年)的关系.(1)求函数的解析式;(2)请估计2021年全球产生的数据量是2011年的多少倍(结果保留3位小数)?参考数据:,,,,,.20.如图,是平面四边形的对角线,,,且.现在沿所在的直线把折起来,使平面平面,如图.(1)求证:平面;(2)求点到平面的距离.21.已知关于x的不等式对恒成立.(1)求的取值范围;(2)当取得最小值时,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】抽象函数的定义域求解,要注意两点,一是定义域是x的取值范围;二是同一对应法则下,取值范围一致.【详解】的定义域为,,即,,解得:且,的定义域为.故选:.2、C【解析】根据折线图,由中位数求法、极差的意义,结合各选项的描述判断正误即可.【详解】A:景区客流量有增有减,故错误;B:由图知:按各月份客流量排序为且是10个月份的客流量,因此数据的中位数为月份和月份对应客流量的平均数,故错误;C:由月至月的客流量相对于月至月的客流量:极差较小且各月份数据相对比较集中,故波动性更小,正确;D:由折线图知:月至月的客流量增长量与月至月的客流量回落量相比明显不同,故错误.故选:C3、C【解析】根据交集定义即可求出.【详解】因为,所以.故选:C.4、C【解析】结合函数的性质,得到,画出函数的图象,结合图象,即可求解.【详解】根据题意,偶函数f(x)在(-∞,0)上为增函数,又,则函数f(x)在(0,+∞)上为减函数,且,函数f(x)的草图如图,又由,可得或,由图可得-2<x<0或x>2,即不等式的解集为(-2,0)∪(2,+∞).故选:C.本题主要考查了函数的奇偶性与单调性的应用,其中解答中熟记函数的奇偶性与单调性,结合函数的图象求解是解答的关键,着重考查推理与运算能力.5、B【解析】由分段函数解析式及指数运算求函数值即可.【详解】由题设,,所以.故选:B.6、B【解析】首先根据对数的运算法则,对式子进行相应的变形、整理,求得结果即可.【详解】,故选B.【点睛】该题考查的是有关对数的运算求值问题,涉及到的知识点有对数的运算法则,熟练掌握对数的运算法则是解题的关键.7、A【解析】设点的坐标为,根据向量的坐标运算得出关于、的方程组,解出这两个未知数,可得出点的坐标.【详解】设点的坐标为,,,,,即,解得,因此,点的坐标为.故选:A.【点睛】本题考查向量的坐标运算,考查计算能力,属于基础题.8、C【解析】设正方体的棱长为,如图,连接,它们交于,连接,则平面,而,故就是直线与平面所成的余角,又为直角三角形且,所以,,设直线与平面所成的角为,则,选C.点睛:线面角的计算往往需要先构造面的垂线,必要时还需将已知的面的垂线适当平移才能构造线面角,最后把该角放置在容易计算的三角形中计算其大小.9、D【解析】由图可得,由选项即可判断.【详解】解:由图可知:,,由选项可知:,故选:D.10、C【解析】①由两直线的位置关系判断;②由直线与平面的位置关系判断;③由空间角定理判断;④由直线与平面平行的定义判断.【详解】①两条直线,没有公共点,那么,平行或异面直线,故错误;②若直线上有无数个点不在平面内,则或相交,故错误;③由空间角定理知,正确;④由直线与平面平行的定义知,正确;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、或.【解析】分析:由题意首先求得实数m的值,然后求解距离即可.详解:由直线垂直的充分必要条件可得:,即:,解得:,,当时点到轴的距离为0,当时点到轴的距离为5,综上可得:点到轴的距离为或.点睛:本题主要考查直线垂直的充分必要条件,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.12、【解析】由系数为1解出的值,再由单调性确定结论【详解】由题意,解得或,若,则函数为,在上递增,不合题意若,则函数为,满足题意故答案为:13、161【解析】由等差数列的性质可得,即可求出,又,带入数据,即可求解【详解】由等差数列的性质可得=,所以,又由等差数列前n项和公式得【点睛】本题考查等差数列的性质及前n项和公式,属基础题14、【解析】根据并集的定义可得答案.【详解】,,.故答案为:.15、##【解析】利用对数的真数大于零可求得原函数的定义域.【详解】对于函数,,解得,故函数的定义域为.故答案为:.16、①②④【解析】直接利用奇函数的定义,函数图象的平移变换,象限角,三角函数的恒等变换以及余弦函数图像的性质即可判断.【详解】对于①,其中,即为奇函数,则①正确;对于②将的图象向右平移个单位长度,即,则②正确;对于③若令,,则,则③不正确;对于④,由题意可知,任意一个长为的开区间上至少包含函数的一个周期,的周期为,则,即,则的最小值是4,则④正确;故答案为:①②④.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析(3)【解析】(1)根据偶函数的性质直接计算;(2)当时,则,根据偶函数的性质即可求出;(3)由题可得,根据单调性可得,即可解出.【小问1详解】因为是上的偶函数,所以.【小问2详解】当时,则,则,故当时,,故,故的单调递增区间为,单调递减区间为.【小问3详解】若,即,即因为在单调递减,所以,故或,解得:或,即.18、(1);(2)(k∈Z);(3)或.【解析】(1)解:由题意,,(1)函数的最小正周期为;(2),得,所以对称中心;(3)由题意,,得或,所以或点睛:本题考查三角函数的恒等关系的综合应用.本题中,由向量的数量积,同时利用三角函数化简的基本方法,得到,利用三角函数的性质,求出周期、对称中心等19、(1)(2)【解析】(1)根据题意选取点代入函数解析式,取出参数即可.(2)先求出2021年全球产生的数据量,然后结合条件可得答案.【小问1详解】由题意点在函数模型的图像上则,解得所以【小问2详解】2021年时,间隔年份为13,则2021年全球产生的数据量是2021年全球产生的数据量是2011年的倍数为:20、(1)见解析;(2).【解析】(1)由平面平面,平面平面,且平面,且,根据线面垂直的判定定理可得平面;(2)取的中点,连.由,可得,又平面,所以,又,所以平面,因此就是点到平面的距离,在中,,,所以.试题解析:(1)证明:因为平面平面平面平面,平面,且,所以平面(2)取的中点,连.因为,所以,又平面,所以,又,所以平面,所以就是点到平面的距离,在中,,,所以.所以是点到平面的距离是.【方法点晴】本题主要考查、线面垂直的判定定理及面面垂直的性质定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年吉林水利电力职业学院单招综合素质考试题库及答案详解一套
- 2026年重庆城市职业学院单招职业适应性考试题库及参考答案详解
- 2026年山西机电职业技术学院单招职业倾向性考试题库及参考答案详解一套
- 2026年辽宁省交通高等专科学校单招职业倾向性测试题库带答案详解
- 安全进校园面试题及答案
- 2025年乌鲁木齐市第五十八中学教师招聘备考题库完整参考答案详解
- 2025年河源市连平县人民代表大会常务委员会办公室公开招聘编外人员备考题库完整参考答案详解
- 2025年福建华南女子职业学院冬季人才招聘10人备考题库有答案详解
- 2026年云浮市新兴县“百万英才汇南粤”招聘教育人才40人备考题库及一套完整答案详解
- 2025年生活服务中心招聘备考题库及一套完整答案详解
- 门窗合同范本的模板
- 深度解析(2026)《DLT 2121-2020高压直流输电换流阀冷却系统化学监督导则》
- 2025北京日报社招聘10人参考笔试题库及答案解析
- 质量部 2025 年度工作总结及 2026 年工作计划
- GB/T 7928-2025地铁车辆通用技术条件
- 2025广西国控集团秋季招聘笔试历年参考题库附带答案详解
- 社会工作专业人才队伍建设中长期规划
- 造影剂脑病新颖课件
- 月租电动车合同范本
- 专题一:马克思主义中国化及其理论基础练习题
- 巴赫哥德堡变奏曲课件
评论
0/150
提交评论