新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2026届高二数学第一学期期末质量跟踪监视试题含解析_第1页
新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2026届高二数学第一学期期末质量跟踪监视试题含解析_第2页
新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2026届高二数学第一学期期末质量跟踪监视试题含解析_第3页
新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2026届高二数学第一学期期末质量跟踪监视试题含解析_第4页
新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2026届高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆维吾尔自治区阿克苏地区库车县乌尊镇中学2026届高二数学第一学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,,,动点P满足,则的取值范围为()A. B.C. D.2.直线关于直线对称的直线方程为()A. B.C. D.3.已知条件,条件表示焦点在x轴上的椭圆,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件4.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A. B.2C. D.5.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.用反证法证明“若a,b∈R,,则a,b不全为0”时,假设正确的是()A.a,b中只有一个为0 B.a,b至少一个不为0C.a,b至少有一个为0 D.a,b全为07.已知椭圆的离心率为,直线与椭圆交于两点,为坐标原点,且,则椭圆的方程为A B.C. D.8.函数在(0,e]上的最大值为()A.-1 B.1C.0 D.e9.已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A. B.C. D.10.圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A. B.C. D.11.若复数的模为2,则的最大值为()A. B.C. D.12.经过点且与双曲线有共同渐近线的双曲线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若在上是增函数,则实数的取值范围是________14.已知原命题为“若,则”,则它的逆否命题是__________(填写”真命题”或”假命题”)15.若=,则x的值为_______16.已知点,,点P在x轴上,且,则点P的坐标为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为F,点是抛物线上的点,且.(1)求抛物线方程;(2)直线与抛物线交于、两点,且.求△OPQ面积的最小值.18.(12分)如图,△ABC中,,,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C,M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体(1)求该几何体中间一个空心球表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积19.(12分)已知直线和的交点为P,求:(1)过点P且与直线垂直的直线l的方程;(2)以点P为圆心,且与直线相交所得弦长为12的圆的方程;(3)从下面①②两个问题中选一个作答,①若直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,求直线l的方程②求圆心在直线上,与x轴相切,被直线截得的弦长的圆的方程注:如果选择两个问题分别作答,按第一个计分20.(12分)设a,b是实数,若椭圆过点,且离心率为.(1)求椭圆E的标准方程;(2)过椭圆E的上顶点P分别作斜率为,的两条直线与椭圆交于C,D两点,且,试探究过C,D两点的直线是否过定点?若过定点,求出定点坐标;否则,说明理由.21.(12分)已知圆,P(2,0),M点是圆Q上任意一点,线段PM的垂直平分线交半径MQ于点C,当M点在圆上运动时,点C的轨迹为曲线C(1)求曲线C方程;(2)已知直线l:x=8,A、B是曲线C上的两点,且不在x轴上,,垂足为,,垂足为,若D(3,0),且的面积是△ABD面积的5倍,求△ABD面积的最大值22.(10分)如图,在三棱锥中,,平面,,分别为棱,的中点.(1)求证:;(2)若,,二面角的大小为,求三棱锥的体积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题设分析知的轨迹为(不与重合),要求的取值范围,只需求出到圆上点的距离范围即可.【详解】由题设,在以为直径的圆上,令,则(不与重合),所以的取值范围,即为到圆上点的距离范围,又圆心到的距离,圆的半径为2,所以的取值范围为,即.故选:C2、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C3、A【解析】根据条件,求得a的范围,根据充分、必要条件的定义,即可得答案.【详解】因为条件表示焦点在x轴上的椭圆,所以,解得或,所以条件是条件q:或的充分不必要条件.故选:A4、A【解析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.5、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.6、D【解析】把要证的结论否定之后,即得所求的反设【详解】由于“a,b不全为0”的否定为:“a,b全为0”,所以假设正确的是a,b全为0.故选:D7、D【解析】根据等腰直角三角形的性质可得,将代入椭圆方程,结合离心率为以及性质列方程组求得与的值,从而可得结果.【详解】设直线与椭圆在第一象限的交点为,因为,所以,即,由可得,,故所求椭圆的方程为.故选D.【点睛】本题主要考查椭圆的标准方程与性质,以及椭圆离心率的应用,意在考查对基础知识掌握的熟练程度,属于中档题.8、A【解析】对函数求导,然后求出函数的单调区间,从而可求出函数的最大值【详解】由,得,当时,,当,,所以在上单调递增,在上单调递减,所以当时,取得最大值,故选:A9、B【解析】设,进而根据题意,结合中点弦的问题得,进而再求解准线方程即可.【详解】解:根据题意,设,所以①,②,所以,①②得:,即,因为直线AB的斜率为1,线段AB的中点的横坐标为3,所以,即,所以抛物线,准线方程为.故选:B10、A【解析】根据题意设出圆的方程,列式即可求出【详解】依题可设圆的方程为,所以,解得即圆的方程是故选:A11、A【解析】由题意得,表示以为圆心,2为半径的圆,表示过原点和圆上的点的直线的斜率,由图可知,当直线与圆相切时,取得最值,然后求出切线的斜率即可【详解】因为复数的模为2,所以,所以其表示以为圆心,2为半径的圆,如图所示,表示过原点和圆上的点的直线的斜率,由图可知,当直线与圆相切时,取得最值,设切线方程为,则,解得,所以的最大值为,故选:A12、C【解析】共渐近线的双曲线方程,设,把点代入方程解得参数即可.【详解】设,把点代入方程解得参数,所以化简得方程故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【点睛】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值14、真命题【解析】先判断原命题的真假,再由逆否命题与原命题是等价命题判断.【详解】因为命题“若,则”是真命题,且逆否命题与原命题是等价命题,所以它的逆否命题是真命题,故答案为:真命题15、4或9.【解析】分析:先根据组合数性质得,解方程得结果详解:因为=,所以因此点睛:组合数性质:16、【解析】设,由,可得,求解即可【详解】设,由故解得:则点P的坐标为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据抛物线的定义列方程,由此求得,进而求得抛物线方程.(2)联立直线的方程和抛物线方程,写出根与系数关系,结合求得的值,求得三角形面积的表达式,进而求得面积的最小值.【详解】(1)依题意.(2)与联立得,,得,又,又m>0,m=4.且,,当k=0时,S最小,最小值为.18、(1);(2).【解析】根据旋转体的轴截面图,根据已知条件求球的半径与长,再利用球体、圆锥的面积、体积公式计算即可.【小问1详解】连接,则,设,在中,,;【小问2详解】,∴圆锥球.19、(1)(2)(3)答案见解析【解析】(1)联立方程组求得交点的坐标,结合直线与直线垂直,求得直线的斜率为,利用直线的点斜式,即可求解;(2)先求得点到直线的距离为,由圆的的垂径定理列出方程求得圆的半径,即可求解;(3)若选①:设直线l的的斜率为,得到,结合题意列出方程,求得的值,即可求解;若选②,设所求圆的圆心为,半径为,得到,利用圆的垂径定理列出方程求得的值,即可求解.【小问1详解】解:由直线和的交点为P,联立方程组,解得,即,因为直线与直线垂直,所以直线的斜率为,所以过点且与直线垂直的直线方程为,即.【小问2详解】解:因为点到直线的距离为,设所求圆的半径为,由圆的的垂径定理得,弦长,解得,所以所求圆的方程为.【小问3详解】解:若选①:直线l过点,且与两坐标轴的正半轴所围成的三角形面积为,设直线l的的斜率为,可得直线的方程为,即,则直线与坐标轴的交点分别为,由,解得或,所以所求直线的方程为或.若选②,设所求圆的圆心为,半径为,因为圆与x轴相切,可得,又由圆心到直线的距离为,利用圆的垂径定理可得,即,解得,即圆心坐标为或,所以所求圆的方程为或.20、(1);(2)过定点,坐标为.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据直线斜率公式和一元二次方程根与系数的关系进行求解即可.【小问1详解】因为椭圆离心率为,所以有.椭圆过点,所以,由可解:,所以该椭圆方程为:;【小问2详解】由(1)可知:,设直线的方程为:,若,由椭圆的对称性可知:,不符合题意,当时,直线的方程与椭圆方程联立得:,设,,,因为,所以,把代入得:,所以有或,解得:或,当时,直线,直线恒过定点,此时与点重合,不符合题意,当时,,直线恒过点,当直线不存在斜率时,此时,,因为,所以,两点不在椭圆上,不符合题意,综上所述:过C,D两点的直线过定点,定点坐标为.【点睛】关键点睛:根据一元二次方程根与系数关系是解题的关键.21、(1)(2)【解析】(1)由定义法求出曲线C的方程;(2)先判断出直线AB过定点H(2,0)或H(4,0).当AB过定点H(4,0),求出最大;当H(2,0)时,可设直线AB:.用“设而不求法”表示出,不妨设(),利用函数的单调性求出△ABD面积的最大值.【小问1详解】因为线段PM的垂直平分线交半径MQ于点C,所以,所以,符合椭圆的定义,所以点C的轨迹为以P、Q为焦点的椭圆,其中,所以,所以曲线C的方程为.【小问2详解】不妨设直线l:x=8交x轴于G(8,0),直线AB交x轴于H(h,0),则,.因为,,,所以.又因为的面积是△ABD面积的5倍,所以.因为G(8,0),D(3,0),所以,所以H(2,0)或H(4,0).当H(4,0)时,则H与A(或H与B)重合,不妨设H与A重合,此时,,要使△ABD面积最大,只需B在短轴顶点时,=2最大,所以最大;当H(2,0)时,要想构成三角形ABD,直线AB的斜率不为0,可设直线AB:.设,则,消去x可得:,所以,,,所以.不妨设(),则,由对勾函数的性质可知,在上单调递减,所以当t=4时,,此时最大综上所述,△ABD面积的最大值为.【点睛】(1)“设而不求”是一种在解析几何中常见的解题方法,可以解决直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论