版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州市十二校2026届数学高二上期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.向量,向量,若,则实数()A. B.1C. D.2.若抛物线x=﹣my2的焦点到准线的距离为2,则m=()A.﹣4 B.C. D.±3.等差数列的首项为正数,其前n项和为.现有下列命题,其中是假命题的有()A.若有最大值,则数列的公差小于0B.若,则使的最大的n为18C.若,,则中最大D.若,,则数列中的最小项是第9项4.已知长方体的底面ABCD是边长为4的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.5.“”是“直线与互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是A. B.C D.7.曲线在点处的切线方程是()A. B.C. D.8.已知全集,集合,则()A. B.C. D.9.已知双曲线的左、右焦点分别为,点在的左支上,过点作的一条渐近线的垂线,垂足为,则的最小值为()A. B.C. D.10.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3C. D.211.已知随机变量X服从二项分布X~B(4,),()A. B.C. D.12.已知空间向量,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆,为其右焦点,过垂直于轴的直线与椭圆相交所得的弦长为,则椭圆的方程为________.14.椭圆的离心率是______15.已知数列{}的通项公式为,前n项和为,当取得最小值时,n的值为___________.16.已知为抛物线上任意一点,为抛物线的焦点,为平面内一定点,则的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列,其n前项和为,已知(1)求数列的通项公式:(2)设,求数列的前n项和18.(12分)如图,在四棱锥中,平面,是等边三角形.(1)证明:平面平面.(2)求点到平面的距离.19.(12分)若等比数列的各项为正,前项和为,且,.(1)求数列的通项公式;(2)若是以1为首项,1为公差的等差数列,求数列的前项和.20.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,其中第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:参考公式:,月份12345违章驾驶员人数1201051009580(1)请利用所给数据求违章人数y与月份x之间的回归直线方程;(2)预测该路口10月份的不“礼让斑马线”违章驾驶员人数;21.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.22.(10分)从甲、乙两名学生中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射靶10次,每次命中的环数如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你认为应该选哪名学生参加比赛?为什么?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由空间向量垂直的坐标表示列方程即可求解.【详解】因为向量,向量,若,则,解得:,故选:C.2、D【解析】把抛物线的方程化为标准方程,由焦点到准线的距离为,即可得到结果,得到答案.【详解】由题意,抛物线,可得,又由抛物线的焦点到准线的距离为2,即,解得.故选D.【点睛】本题主要考查了抛物线的标准方程,以及简单的几何性质的应用,其中解答中熟记抛物线的焦点到准线的距离为是解答的关键,着重考查了推理与计算能力,属于基础题.3、B【解析】由有最大值可判断A;由,可得,,利用可判断BC;,得,,可判断D.【详解】对于选项A,∵有最大值,∴等差数列一定有负数项,∴等差数列为递减数列,故公差小于0,故选项A正确;对于选项B,∵,且,∴,,∴,,则使的最大的n为17,故选项B错误;对于选项C,∵,,∴,,故中最大,故选项C正确;对于选项D,∵,,∴,,故数列中的最小项是第9项,故选项D正确.故选:B.4、C【解析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【详解】连接,建立如图所示的空间直角坐标系∵底面是边长为4的正方形,,∴,,,因为,,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:C.5、A【解析】根据两直线垂直的性质求出,再结合充分条件和必要条件的定义即可得出答案.【详解】解:因为直线与互相垂直,所以,解得或,所以“”是“直线与互相垂直”的充分不必要条件.故选:A.6、B【解析】构造函数,可知函数为奇函数,利用导数分析出函数在上的单调性,并得出,然后分别在和解不等式,由此可得出不等式的解集.【详解】构造函数,该函数的定义域为,由于函数为上的奇函数,则,所以,函数为上的奇函数,且,,.当时,,此时,函数单调递增,由,可得,解得;当时,则函数单调递增,由,可得,解得.综上所述,使得成立的的取值范围是.故选:B.【点睛】本题考查利用函数的单调性求解函数不等式,根据导数不等式的结构构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.7、B【解析】求导,得到曲线在点处的斜率,写出切线方程.【详解】因为,所以曲线在点处斜率为4,所以曲线在点处的切线方程是,即,故选:B8、B【解析】根据题意先求出,再利用交集定义即可求解.【详解】全集,集合,则,故故选:B9、D【解析】利用双曲线定义可得到,将的最小值变为的最小值问题,数形结合得解.【详解】由题意得,故,如图所示:到渐近线的距离,则,当且仅当,,三点共线时取等号,∴的最小值为.故选:D10、D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线定义,考查数形结合的数学思想方法,属于基础题.11、D【解析】利用二项分布概率计算公式,计算出正确选项.【详解】∵随机变量X服从二项分布X~B(4,),∴.故选:D.12、C【解析】直接利用向量的坐标运算法则求解即可【详解】因为,,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】将代入椭圆的方程,可得出,可得出关于的等式,求出的值,进而可求得的值,由此可得出椭圆的方程.【详解】将代入椭圆的方程可得,可得,由已知可得,整理可得,,解得,所以,,因此,椭圆的方程为.故答案为:.14、【解析】求出、、的值,即可得出椭圆的离心率.【详解】在椭圆中,,,,因此,椭圆的离心率是.故答案为:.15、7【解析】首先求出数列的正负项,再判断取得最小值时n的值.【详解】当,,解得:,当和时,,所以取得最小值时,.故答案为:716、3【解析】利用抛物线的定义,再结合图形即求.【详解】由题可得抛物线的准线为,设点在准线上的射影为,则根据抛物线的定义可知,∴要求取得最小值,即求取得最小,当三点共线时最小,为.故答案为:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用等差数列的基本量,结合已知条件,列出方程组,求得首项和公差,即可写出通项公式;(2)根据(1)中所求,结合裂项求和法,即可求得.【小问1详解】因为是等差数列,其n前项和为,已知,设其公差为,故可得:,,解得,又,故.【小问2详解】由(1)知,,又,故.即.18、(1)证明见解析;(2).【解析】(1)根据等边三角形的性质、线面垂直的性质,结合面面垂直的判定定理进行证明即可;(2)利用余弦定理,结合三棱锥的等积性进行求解即可.【小问1详解】证明:设,因为是等边三角形,且,所以是的中点,则.又,所以,所以,即.又平面平面,所以.又,所以平面.因为平面,所以平面平面.【小问2详解】解:因为,所以.在中,,所以,则又平面,所以.如图,连接,则,所以.设点到平面的距离为,因为,所以,解得,即点到平面的距离为.19、(1)(2)【解析】(1)设公比为,则由已知可得,求出公比,再求出首项,从而可求出数列的通项公式;(2)由已知可得,而,所以,然后利用错位相减法可求得结果【小问1详解】设各项为正的等比数列的公比为,,,则,,,即,解得或(舍去),所以,所以数列的通项公式为.【小问2详解】因为是以1为首项,1为公差的等差数列,所以.由(1)知,所以.所以①在①的等式两边同乘以,得②由①②等式两边相减,得,所以数列的前项和.20、(1);(2)37【解析】(1)将题干数据代入公式求出与,进而求出回归直线方程;(2)再第一问的基础上代入求出结果.【小问1详解】,,则,,所以回归直线方程;【小问2详解】令得:,故该路口10月份的不“礼让斑马线”违章驾驶员人数为37.21、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年厦门东海职业技术学院单招职业倾向性测试题库含答案详解
- 2026年应天职业技术学院单招职业技能考试题库及参考答案详解1套
- 2026年长江师范学院单招职业倾向性测试题库及答案详解一套
- 2026年厦门工学院单招职业适应性考试题库参考答案详解
- 2026年单招适应性考试题库附答案详解
- 森林消防员面试题及答案
- 护士仿真面试题及答案
- 2025年宜宾市叙州区妇幼保健计划生育服务中心第二次公开招聘聘用人员备考题库及参考答案详解
- 2025年市属国企派遣员工招聘备考题库及一套答案详解
- 2025年晋中健康学院青年教师招聘6人备考题库及答案详解1套
- 一级建造师考试机电工程管理与实务试卷及答案(2025年)
- 2026年潍坊护理职业学院单招职业倾向性考试必刷测试卷及答案1套
- 医保政策学习课件
- 2025浙江省自由贸易发展中心招聘工作人员5人(第二批)参考笔试试题及答案解析
- 光学加工机械项目可行性分析报告范文
- 网易丁磊成功创业之路
- 老公情人签约协议书
- 学堂在线雨课堂《唐宋名家词(河南大学)》网课学堂云单元测试考核答案
- 煤矿班组长安全培训
- 体育培训校区管理制度
- 4、蓝恒达QC小组活动基础知识与实务培训课件
评论
0/150
提交评论