版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省安庆市潜山市第二中学高二上数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则的值为()A.1225 B.1275C.1326 D.13622.已知命题:,;命题:,使,若“”为假命题,则实数的取值范围是()A. B.C. D.3.已知椭圆的离心率为,直线与椭圆交于两点,为坐标原点,且,则椭圆的方程为A B.C. D.4.已知函数在区间有且仅有2个极值点,则m的取值范围是()A. B.C. D.5.在长方体,,则异面直线与所成角的余弦值是()A. B.C. D.6.过,两点的直线的一个方向向量为,则()A.2 B.2C.1 D.17.已知点,,若直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.8.命题:“,”的否定是()A., B.,C., D.,9.已知等比数列的前n项和为,且满足公比0<q<1,<0,则下列说法不正确的是()A.一定单调递减 B.一定单调递增C.式子-≥0恒成立 D.可能满足=,且k≠110.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.11.如图,在四面体中,,,,分别为,,,的中点,则化简的结果为()A. B.C. D.12.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系中,,点P满足,设点P的轨迹为C,下列结论正确的是()A.C的方程为B.当A,B,P三点不共线时,面积的最大值为24C.当A,B,P三点不共线时,射线是的角平分线D.在C上存在点M,使得二、填空题:本题共4小题,每小题5分,共20分。13.已知某农场某植物高度,且,如果这个农场有这种植物10000棵,试估计该农场这种植物高度在区间上的棵数为______.参考数据:若,则,,.14.已知点是抛物线的焦点,点分别是抛物线上位于第一、四象限的点,若,则的面积为__________.15.焦点在轴上的双曲线的离心率为,则的值为___________.16.与直线平行,且距离为的直线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,其中.(1)试讨论函数的单调性;(2)若,证明:.18.(12分)已知数列{}的前n项和为,且2=3-3(n∈)(1)求数列{}的通项公式(2)若=(n+1),求数列{}的前n项和19.(12分)已知数列满足,.(1)求数列的通项公式;(2)记,其中表示不超过最大整数,如,.(i)求、、;(ii)求数列的前项的和.20.(12分)如图四棱锥P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等边三角形.(1)设面PAB面PDC=l,证明:l//平面ABCD;(2)线段PC内是否存在一点E,使面ADE与面ABCD所成角的余弦值为,如果存在,求λ=的值,如果不存在,请说明理由.21.(12分)已知点,直线,圆.(1)若连接点与圆心的直线与直线垂直,求实数的值;(2)若直线与圆相交于两点,且弦的长为,求实数的值22.(10分)已知抛物线的焦点也是椭圆的一个焦点,如图,过点任作两条互相垂直的直线,,分别交抛物线于,,,四点,,分别为,的中点.(1)求的值;(2)求证:直线过定点,并求出该定点的坐标;(3)设直线交抛物线于,两点,试求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】观察前4项可得,从而可求得结果【详解】由题意可得,……,观察规律可得,所以,故选:B2、D【解析】根据题意,判断命题和的真假性,结合判别式与二次函数恒成立问题,即可求解.【详解】根据题意,由为假命题可得“”为真命题,即p、q都为真命题,故,解得故选:D3、D【解析】根据等腰直角三角形的性质可得,将代入椭圆方程,结合离心率为以及性质列方程组求得与的值,从而可得结果.【详解】设直线与椭圆在第一象限的交点为,因为,所以,即,由可得,,故所求椭圆的方程为.故选D.【点睛】本题主要考查椭圆的标准方程与性质,以及椭圆离心率的应用,意在考查对基础知识掌握的熟练程度,属于中档题.4、A【解析】根据导数的性质,结合余弦型函数的性质、极值的定义进行求解即可.【详解】由,,因为在区间有且仅有2个极值点,所以令,解得,因此有,故选:A5、A【解析】在长方体中建立空间直角坐标系,求出相关点的坐标,进而求得向量,的坐标,利用向量的夹角公式即可求得答案.详解】如图,由题意可知DA,DC,两两垂直,则以D为原点,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系.设,则,,,,,,从而,故异面直线与所成角的余弦值是,故选:A.6、C【解析】应用向量的坐标表示求的坐标,由且列方程求y值.【详解】由题设,,则且,所以,即,可得.故选:C7、B【解析】直接利用两点间的坐标公式和直线的斜率的关系求出结果【详解】解:直线过点且斜率为,与连接两点,的线段有公共点,由图,可知,,当时,直线与线段有交点故选:B8、D【解析】利用全称量词命题的否定可得出结论.【详解】由全称量词命题的否定可知,命题“,”的否定是“,”.故选:D.9、D【解析】根据等比数列的通项公式,前n项和的意义,可逐项分析求解.【详解】因为等比数列的前n项和为,且满足公比0<q<1,<0,所以当时,由可得,故数列为增函数,故B正确;由0<q<1,<0知,所以,故一定单调递减,故A正确;因为当时,,,所以,即-,当时,,综上,故C正确;若=,且k≠1,则,即,因为,故,故矛盾,所以D不正确.故选:D10、D【解析】设直线倾斜角为,则,即可求出.【详解】设直线的倾斜角为,则,又因为,所以.故选:D.11、C【解析】根据向量的加法和数乘的几何意义,即可得到答案;【详解】故选:C12、C【解析】根据题意可求出C的方程为,即可根据题意判断各选项的真假【详解】对A,由可得,化简得,即,A错误;对B,当A,B,P三点不共线时,点到直线的最大距离为,所以面积的最大值为,B错误;对C,当A,B,P三点不共线时,因为,所以射线是的角平分线,C正确;对D,设,由可得点的轨迹方程为,而圆与圆的圆心距为,两圆内含,所以这样的点不存在,D错误故选:C二、填空题:本题共4小题,每小题5分,共20分。13、1359【解析】由已知求得,则,结合已知求得,乘以10000得答案【详解】解:由,得,又,,则,估计该农场这种植物高度在区间,上的棵数为故答案为:135914、42【解析】由焦半径公式求得参数,得抛物线方程,从而可求得两点纵坐标,再求得直线与轴的交点坐标后可得面积【详解】因为,所以,抛物线的方程为,把代入方程,得(舍去),即.同理,直线方程为,即.所以直线与轴交于点,所以.故答案为:4215、【解析】将双曲线的方程化为标准式,可得出、,由此可得出关于的等式,即可解得的值.【详解】双曲线的标准方程为,由题意可得,则,,,所以,,解得.故答案为:.16、或【解析】由题意,设所求直线方程为,根据两平行直线间的距离公式即可求解.【详解】解:由题意,设所求直线方程为,因为直线与直线的距离为,所以,解得或,所以所求直线方程为或,故答案为:或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)证明见解析【解析】(1)先求出函数的定义域,然后求导,再根据导数的正负求出函数的单调区间,(2)要证,只要证,由于时,,当时,令,再利用导数求出其最小值大于零即可【小问1详解】的定义域为当时,,在上单调递增;当时,令,解得;令,解得;综上所述:当时,在上单调递增,无减区间;当时,在上单调递减,在上单调递增;【小问2详解】,,即证:,即证:当时,,,当时,令,则在上单调递增在上单调递增综上所述:,即18、(1);(2).【解析】(1)利用的关系可得,即可知为等比数列,写出等比数列通项公式即可.(2)由(1)得,利用错位相减求和法即可求出前n项和.【小问1详解】当时,,解得,当时,,则,即,又,则,∴,故是以为首项,以3为公比的等比数列,∴数列的通项公式为;【小问2详解】由(1)知,所以,所以①,则②,①-②,得,整理,得,,所以.19、(1);(2)(i),,;(ii).【解析】(1)推导出数列为等差数列,确定该数列的首项和公差,即可求得数列的通项公式;(2)(i)利用对数函数的单调性结合题中定义可求得、、的值;(ii)分别解不等式、、,结合题中定义可求得数列的前项的和.【小问1详解】解:因为,,则,可得,,可得,以此类推可知,对任意的,.由,变形为,是一个以为公差的等差数列,且首项为,所以,,因此,.【小问2详解】解:(i),则,,则,故,,则,故;(ii),当时,即当时,,当时,即当时,,当时,即当时,,因此,数列的前项的和为.20、(1)证明见解析(2)存在【解析】(1)由已知可得∥,再由线面平行的判定可得∥平面,再由线面平行的性质可得∥,再由线面平行的判定可得结论,(2)由已知条件可证得两两垂直,所以以为原点,所在的直线分别为轴建立空间直角坐标系,利用空间向量求解【小问1详解】证明:因为,所以,所以∥,因为平面,平面,所以∥平面,因为平面,且平面面,所以∥,因为平面,平面,所以∥平面,【小问2详解】设的中点为,因为△PDC是等边三角形,所以,因为平面PDC⊥平面ABCD,且平面面,所以平面,因为平面,所以,所以以为原点,所在的直线分别为轴建立空间直角坐标系,如图所示,则,所以,假设存在这样的点,由已知得,则,所以,因为平面,所以平面的一个法向量为,设平面的一个法向量为,则,令,则,则所以,整理得,解得(舍去),或,所以21、(1)3(2)实数的值为和【解析】(1)由直线垂直,斜率乘积为可得值;(2)求出加以到直线的距离,由勾股定理求弦长,从而可得参数值【小问1详解】圆,,,,,,【小问2详解】圆半径为,设圆心到直线的距离为,则又由点到直线距离公式得:化简得:,解得:或所以实数的值为和.22、(1)(2)证明见解析,(3,0)(3)【解析】(1)求出椭圆的焦点坐标,从而可知抛物线的焦点坐标,进而可得的值;(2)首先设出直线的方程,联立直线与抛物线的方程,得到,坐标,令,可得直线过点,再证明当,,,三点共线即可;(3)设出的直线方程,联立直线与抛物线的方程,利用韦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年四川希望汽车职业学院单招职业适应性考试题库及答案详解一套
- 2026年南阳科技职业学院单招职业适应性考试题库参考答案详解
- 2026年南充文化旅游职业学院单招职业倾向性测试题库及答案详解一套
- 2026年济南工程职业技术学院单招职业技能考试题库参考答案详解
- 2026年浙江工业职业技术学院单招职业技能考试题库及完整答案详解1套
- 2026年烟台工程职业技术学院单招职业倾向性考试题库及完整答案详解1套
- 2026年河南科技职业大学单招职业倾向性测试题库及参考答案详解1套
- 2026年贵州电子商务职业技术学院单招职业适应性考试题库附答案详解
- 2026年渭南职业技术学院单招综合素质考试题库及答案详解1套
- 2026年上海财经大学浙江学院单招职业倾向性测试题库及答案详解一套
- 《Stata数据统计分析教程》
- 2024-2025学年广州市越秀区八年级上学期期末语文试卷(含答案)
- 宠物诊疗治疗试卷2025真题
- 媒体市场竞争力分析-洞察及研究
- 口腔科口腔溃疡患者漱口液选择建议
- 精神科抑郁症心理干预培训方案
- 2025年国家开放大学(电大)《外国文学》期末考试复习题库及答案解析
- 三防漆涂覆流程及质量控制标准
- 慢性阻塞性肺病糖皮质激素使用培训
- 2026中水淮河规划设计研究有限公司新员工招聘笔试考试备考试题及答案解析
- 综合义诊活动方案
评论
0/150
提交评论