版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省鹰潭一中2026届高二数学第一学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列中,,,则()A.6 B.7C.8 D.92.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.43.直线被椭圆截得的弦长是A. B.C. D.4.已知等差数列的前项和为,若,,则()A. B.C. D.5.如图,平行六面体中,为的中点,,,,则()A. B.C. D.6.已知双曲线C:的渐近线方程是,则m=()A.3 B.6C.9 D.7.命题,,则是()A., B.,C., D.,8.已知椭圆的两个焦点分别为,若椭圆上不存在点,使得是钝角,则椭圆离心率的取值范围是()A. B.C. D.9.设抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是()A.6 B.8C.9 D.1010.已知不等式解集为,下列结论正确的是()A. B.C D.11.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.512.若函数在上有两个极值点,则下列选项中不正确的为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.牛顿迭代法又称牛顿-拉夫逊方法,它是牛顿在17世纪提出的一种在实数集上近似求解方程根的一种方法.具体步骤如下:设r是函数y=f(x)的一个零点,任意选取x0作为r的初始近似值,作曲线y=f(x)在点(x0,f(x0))处的切线l1,设l1与x轴交点的横坐标为x1,并称x1为r的1次近似值;作曲线y=f(x)在点(x1,f(x1))处的切线l2,设l2与x轴交点的横坐标为x2,并称x2为r的2次近似值.一般的,作曲线y=f(x)在点(xn,f(xn))(n∈N)处的切线ln+1,记ln+1与x轴交点的横坐标为xn+1,并称xn+1为r的n+1次近似值.设f(x)=x3+x-1的零点为r,取x0=0,则r的2次近似值为________14.甲乙两艘轮船都要在某个泊位停靠8个小时,假定它们在一昼夜的时间段内随机地到达,则两船中有一艘在停靠泊位时、另一艘船必须等待的概率为______.15.若方程表示焦点在y轴上的双曲线,则实数k的取值范围是______16.如图,在直棱柱中,,则异面直线与所成角的余弦值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等比数列中,,(1)求的通项公式;(2)记为的前n项和.若,求m的值18.(12分)已知函数(…是自然对数的底数).(1)求的单调区间;(2)求函数的零点的个数.19.(12分)已知抛物线C:(1)若抛物线C上一点P到F的距离是4,求P的坐标;(2)若不过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点20.(12分)已知二次函数,令,解得.(1)求二次函数的解析式;(2)当关于的不等式恒成立时,求实数的范围.21.(12分)在△中,角A,B,C的对边分别为a,b,c,已知,,.(1)求的大小及△的面积;(2)求的值.22.(10分)在平面直角坐标系中,动点到直线的距离与到点的距离之差为.(1)求动点的轨迹的方程;(2)过点的直线与交于、两点,若的面积为,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由等差数列的基本量法先求得公差,然后可得【详解】设数列的公差为,则,,所以故选:C2、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.3、A【解析】直线y=x+1代入,得出关于x的二次方程,求出交点坐标,即可求出弦长【详解】将直线y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直线y=x+1被椭圆x2+4y2=8截得的弦长为故选A【点睛】本题查直线与椭圆的位置关系,考查弦长的计算,属于基础题4、B【解析】根据和可求得,结合等差数列通项公式可求得.【详解】设等差数列公差为,由得:;又,,.故选:B.5、B【解析】先用向量与表示,然后用向量表示向量与,即可得解【详解】解:为的中点,故选:【点睛】本题考查了平面向量基本定理的应用,解决本题的关键是熟练运用向量的加法、减法及实数与向量的积的运算,属于基础题6、C【解析】根据双曲线的渐近线求得的值.【详解】依题意可知,双曲线的渐近线为,所以.故选:C7、D【解析】根据特称命题的否定为全称命题,即可得到答案.【详解】因为命题,,所以,.故选:D8、C【解析】点P取端轴的一个端点时,使得∠F1PF2是最大角.已知椭圆上不存在点P,使得∠F1PF2是钝角,可得b≥c,利用离心率计算公式即可得出【详解】∵点P取端轴的一个端点时,使得∠F1PF2是最大角已知椭圆上不存在点P,使得∠F1PF2是钝角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故选C【点睛】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).9、A【解析】计算抛物线的准线,根据距离结合抛物线的定义得到答案.【详解】抛物线的焦点为,准线方程为,到轴的距离是4,故到准线的距离是,故点到该抛物线焦点的距离是.故选:A.10、C【解析】根据不等式解集为,得方程解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.11、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.12、C【解析】求导,根据题意可得,从而可得出答案.【详解】解:,因为函数在上有两个极值点,所以,即.所以ABD正确,C错误.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用导数的几何意义根据r的2次近似值的定义求解即可【详解】由,得,取,,所以过点作曲线的切线的斜率为1,所以直线的方程为,其与轴交点的横坐标为1,即,因为,所以过点作曲线的切线的斜率为4,所以直线的方程为,其与轴交点的横坐标为,即,故答案为:14、【解析】利用几何概型的面积型概率计算,作出边长为24的正方形面积,求出部分的面积,即可求得答案.【详解】设甲乙两艘轮船到达的时间分为,则,记事件为两船中有一艘在停靠泊位时、另一艘船必须等待,则,即∴.故答案为:.【点睛】本题考查几何概型,考查转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意对概率模型的抽象成面积型.15、【解析】由题可得,即求.【详解】因为方程表示焦点在轴上的双曲线,则,解得.故答案为:.16、【解析】建立空间直角坐标系后求相关的向量后再用夹角公式运算即可.【详解】如图,以C为坐标原点,所在直线为x,y,z轴,建立空间直角坐标系,则,所以,所以,故异面直线与所成角的余弦值为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)5.【解析】(1)设的公比为q,解方程即得解;(2)分两种情况解方程即得解.【小问1详解】解:设的公比为q,由题设得由已知得,解得(舍去),或故或【小问2详解】解:若,则由,得,解得若,则由,得,因为,所以此方程没有正整数解综上,18、(1)当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为;(2)时函数没有零点;或时函数有且只有一个零点;时,函数有两个零点.【解析】(1)先对函数求导,然后分和两种情况判断导函数正负,求其单调区间;(2)由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,从而可得答案【详解】(1)因为,所以,当时,恒成立,所以的单调递增区间为,无单调递减区间;当时,令,得;令,得,所以的单调递减区间为,单调递增区间为.(2)显然0不是函数的零点,由,得.令,则.或时,,时,,所以在和上都是减函数,在上是增函数,时取极小值,又当时,.所以时,关于的方程无解,或时关于的方程只有一个解,时,关于的方程有两个不同解.因此,时函数没有零点,或时函数有且只有一个零点,时,函数有两个零点.【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查利用导数判断函数的零点,解题的关键是由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,考查数形结合的思想,属于中档题19、(1)(2)见解析【解析】(1)由抛物线的定义,可得点的坐标;(2)可设直线的方程为,,,,与抛物线联立,消,利用韦达定理求得,,再根据,可得,从而可求得参数的关系,即可得出结论.【小问1详解】解:设,,由抛物线的定义可知,即,解得,将代入方程,得,即的坐标为;【小问2详解】证明:由题意知直线不能与轴平行,可设直线的方程为,与抛物线联立得,消去得,设,,,则,,由,可得,即,即,即,又,解得,所以直线方程为,当时,,所以直线过定点20、(1);(2).【解析】(1)利用一元二次不等式的解集是,得到-3,2是方程的两个根,根据根与系数之间的关系,即可求,;(2)根据题意,得出不等式恒成立,则,解不等式即可求出实数的范围.详解】解:(1)由题可知,,解得:,则-3,2是方程的两个根,且,所以由根与系数之间的关系得,解得,所以二次函数的解析式为:;(2)由于不等式恒成立,即恒成立,则,解得:,所以实数的范围为.【点睛】本题考查由一元二次不等式的解集求函数解析式,以及不等式恒成立问题求参数范围,考查根与系数的关系和一元二次函数的图象和性质,考查化简运算能力21、(1),△的面积为;(2).【解析】(1)应用余弦定理求的大小,由三角形面积公式求△的面积;(2)由(1)及正弦定理的边角关系可得,即可求目标式的值.【小问1详解】在△中,由余弦定理得:,又,则.所以△的面积为.【小问2详解】由(1)得:,由正弦定理得:,则,所以.22、(1);(2)或.【解析】(1)本题首先可以设动点,然后根据题意得出,通过化简即可得出结果;(2)本题首先可排除直线斜率不存在时情况,然后设直线方程为,通过联立方程并化简得出,则,,再然后根据得出,最后根据的面积为即可得出结果.【详解】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃电器科学研究院2025年度聘用制工作人员招聘备考题库及答案详解一套
- 2025年兴业银行天津分行校园招聘备考题库及答案详解一套
- 2025年中信银行诚聘驻点客户经理(国企可接受无经验)招聘备考题库及一套参考答案详解
- 2025年中国科学院心理研究所认知与发展心理学研究室杜忆研究组招聘备考题库及完整答案详解1套
- 菏泽医学专科学校《中国近代史纲要》2023-2024学年第一学期期末试卷
- 2025年中国科学院东北地理与农业生态研究所学术期刊中心工作人员招聘备考题库及一套完整答案详解
- 2025年主管护师(护理学)高频考题 190 题及答案
- 2025年浙江招聘恒信农商银行专职清非人员的备考题库及参考答案详解一套
- 安全管理与技术监控课件
- 代购社补协议书
- HYT 251-2018 宗海图编绘技术规范
- 九下劳动教育教案
- 智能装备制造业售后服务体系建设
- 馒头营销方案
- 会议服务培训课件
- 学前教育研究方法-学前教育研究设计课件
- 中国马克思主义与当代课后习题答案
- 专题10 小说阅读(考点精讲)-【中职专用】中职高考语文一轮复习讲练测(四川适用)
- Python数据分析与应用-从数据获取到可视化(第2版)习题及答案
- 埃斯特维华义制药有限公司年产35吨4800、25吨4790高级中间体技改项目环境影响报告书
- 前列腺癌诊治新进展课件
评论
0/150
提交评论