2026届广东汕头市数学高一上期末质量跟踪监视模拟试题含解析_第1页
2026届广东汕头市数学高一上期末质量跟踪监视模拟试题含解析_第2页
2026届广东汕头市数学高一上期末质量跟踪监视模拟试题含解析_第3页
2026届广东汕头市数学高一上期末质量跟踪监视模拟试题含解析_第4页
2026届广东汕头市数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东汕头市数学高一上期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于定义域为的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调的;②当定义域是时,的值域也是,则称是函数的一个“黄金区间”.如果可是函数的一个“黄金区间“,则的最大值为()A. B.1C. D.22.将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增3.函数零点的个数为()A.4 B.3C.2 D.04.若,则的值为A. B.C.2 D.35.已知,那么下列结论正确的是()A. B.C. D.6.若,为第四象限角,则的值为()A. B.C. D.7.已知f(x)、g(x)均为[﹣1,3]上连续不断的曲线,根据下表能判断方程f(x)=g(x)有实数解的区间是()x﹣10123f(x)﹣06773.0115.4325.9807.651g(x)﹣0.5303.4514.8905.2416.892A.(﹣1,0) B.(1,2)C.(0,1) D.(2,3)8.已知函数,若,,,则,,的大小关系为A. B.C. D.9.已知平面向量,,若,则实数的值为()A.0 B.-3C.1 D.-110.若a,b都为正实数且,则的最大值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若扇形的面积为,半径为1,则扇形的圆心角为___________.12.将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍,得到函数的图象,则函数的解析式为____________13.若正数,满足,则________.14.在中,,则等于______15.已知正实数,,且,若,则的值域为__________16.已知直线,则与间的距离为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从下面所给三个条件中任意选择一个,补充到下面横线处,并解答.条件一、,;条件二、方程有两个实数根,;条件三、,.已知函数为二次函数,,,.(1)求函数的解析式;(2)若不等式对恒成立,求实数k的取值范围.18.已知函数满足,且.(1)求的解析式;(2)求在上的值域.19.已知函数,,设(1)求的值;(2)是否存在这样的负实数k,使对一切恒成立,若存在,试求出k取值集合;若不存在,说明理由.20.自新冠疫情爆发以来,全球遭遇“缺芯”困境,同时以美国为首的西方国家对中国高科技企业进行打压及制裁.在这个艰难的时刻,我国某企业自主研发了一款具有自主知识产权的平板电脑,并从2021年起全面发售.经测算,生产该平板电脑每年需投入固定成本1350万元,每生产x(千台)电脑需要另投成本(万元),且,另外,每台平板电脑售价为0.6万元,假设每年生产的平板电脑能够全部售出.已知2021年共售出10000台平板电脑,企业获得年利润为1650万元(1)求企业获得年利润(万元)关于年产量x(千台)的函数关系式;(2)当年产量为多少(千台)时,企业所获年利润最大?并求最大年利润21.已知二次函数fx(1)当对称轴为x=-1时,(i)求实数a的值;(ii)求f(x)在区间-2,2上的值域.(2)解不等式fx

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据题意得到在上单调,从而得到为方程的两个同号实数根,然后化简,进而结合根与系数的关系得到答案.【详解】由题意,在和上均是增函数,而函数在“黄金区间”上单调,所以或,且在上单调递增,故,即为方程的两个同号实数根,即方程有两个同号的实数根,因为,所以只需要或,又,所以,则当时,有最大值.2、D【解析】由条件根据函数的图象变换规律得到变换之后的函数解析式,再根据正弦函数的单调性判断即可【详解】解:将函数的图象向右平移个单位长度,得到,若,则,因为在上不单调,故在上不单调,故A、B错误;若,则,因为在上单调递增,故在上单调递增,故C错误,D正确;故选:D3、A【解析】由,得,则将函数零点的个数转化为图象的交点的个数,画出两函数的图象求解即可【详解】由,得,所以函数零点的个数等于图象的交点的个数,函数的图象如图所示,由图象可知两函数图象有4个交点,所以有4个零点,故选:A4、A【解析】利用同角三角函数的基本关系,把要求值的式子化为,即可得到答案.【详解】由题意,因为,所以,故选A【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角恒等变换的公式,合理化简、运算是解答的关键,着重考查了运算与求解能力.5、B【解析】根据不等式的性质可直接判断出结果.【详解】,,知A错误,B正确;当时,,C错误;当时,,D错误.故选:B.6、D【解析】直接利用平方关系即可得解.【详解】解:因为,为第四象限角,所以.故选:D.7、C【解析】设h(x)=f(x)﹣g(x),利用h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,即可得出结论.【详解】设h(x)=f(x)﹣g(x),则h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,∴h(x)的零点在区间(0,1),故选:C.【点睛】思路点睛:该题考查的是有关零点存在性定理的应用问题,解题思路如下:(1)先构造函数h(x)=f(x)﹣g(x);(2)利用题中所给的有关函数值,得到h(0)=﹣0.44<0,h(1)=0.542>0;(3)利用零点存在性定理,得到结果.8、C【解析】根据函数解析式先判断函数的单调性和奇偶性,然后根据指数和对数的运算法则进行化简即可【详解】∵f(x)=x3,∴函数f(x)是奇函数,且函数为增函数,a=﹣f(log3)=﹣f(﹣log310)=f(log310),则2<log39.1<log310,20.9<2,即20.9<log39.1<log310,则f(209)<f(log39.1)<f(log310),即c<b<a,故选C【点睛】本题主要考查函数值的大小的比较,根据函数解析式判断函数的单调性和奇偶性是解决本题的关键9、C【解析】根据,由求解.【详解】因为向量,,且,所以,解得,故选:C.10、D【解析】由基本不等式,结合题中条件,直接求解,即可得出结果.【详解】因为,都为正实数,,所以,当且仅当,即时,取最大值.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接根据扇形的面积公式计算可得答案【详解】设扇形的圆心角为,因为扇形的面积为,半径为1,所以.解得,故答案为:12、【解析】利用函数的图象变换规律,即可得到的解析式【详解】函数的图象向右平移个单位,可得到,再将图象上每一点的横坐标缩短到原来的倍,可得到.故.【点睛】本题考查了三角函数图象的平移变换,属于基础题13、108【解析】设,反解,结合指数运算和对数运算,即可求得结果.【详解】可设,则,,;所以.故答案为:108.14、【解析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.15、【解析】因为,所以.因为且,.所以,所以,所以,.则的值域为.故答案为.16、【解析】根据平行线间距离直接计算.【详解】由已知可得两直线互相平行,故,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择条件一、二、三均可得(2)【解析】(1)根据二次函数的性质,无论选择条件一、二、三均可得的对称轴为,进而待定系数求解即可;(2)由题对恒成立,进而结合基本不等式求解即可.【小问1详解】解:选条件一:设因为,,所以的对称轴为,因为,,所以,解得,所以选条件二:设因为方程有两个实数根,,所以的对称轴为,因为,,所以,解得,所以选条件三:设因为,,所以的对称轴为,因为,,所以,解得,所以【小问2详解】解:对恒成立对恒成立当且仅当时取等号,∴所求实数k的取值范围为.18、(1)(2)【解析】(1)利用换元法令,求得的表达式,代入即可求得参数,即可得的解析式;(2)根据函数单调性,即可求得在上的值域.【详解】(1)令,则,则.因为,所以,解得.故的解析式为.(2)由(1)知,在上为增函数.因为,,所以在上的值域为.【点睛】本题考查了换元法求二次函数的解析式,根据函数单调性求函数的值域,属于基础题.19、(1);(2)存在,.【解析】(1)由题可得,代入即得;(2)由题可得函数,,为奇函数且在上单调递减,构造函数,则可得恒成立,进而可得,对恒成立,即求.【小问1详解】∵函数,,∴,∴.【小问2详解】∵,由,得,又在上单调递减,在其定义域上单调递增,∴在上单调递减,又,∴为奇函数且单调递减;∵,又函数在R上单调递增,∴函数在R上单调递减,又,∴函数为奇函数且单调递减;令,则函数在上单调递减,且为奇函数,由,可得,即恒成立,∴,即,对恒成立,故,即,故存在负实数k,使对一切恒成立,k取值集合为.【点睛】关键点点睛:本题的关键是构造奇函数,从而问题转化为,对恒成立,参变分离后即求.20、(1)(2)当年产量为100(千台)时,企业所获年利润最大,最大年利润为万元.【解析】(1)根据2021年共售出10000台平板电板电脑,企业获得年利润为1650万元,求出,进而求出(万元)关于年产量x(千台)的函数关系式;(2)分别求出与所对应的函数关系式的最大值,比较后得到答案.【小问1详解】10000台平板电脑,即10千台,此时,根据题意得:,解得:,故当时,,当时,,综上:;【小问2详解】当时,,当时,取得最大值,;当时,,当且仅当,即时,等号成立,,因为,所以当年产量为100(千台)时,企业所获年利润最大,最大年利润为万元.21、(1)(i)-13;(ii)(2)答案见解析.【解析】(1)(i)解方程(a+1)2a=-1即得解;((2)对a分类讨论解不等式.【小问1详解】解:(i)由题得--(a+1)(ii)fx=-1所以当x∈-2,2时,ff(x)所以f(x)在区间-2,2上的值域为[-5【小问2详解】解:ax当a=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论