云南省昆明市重点中学2026届高二数学第一学期期末考试模拟试题含解析_第1页
云南省昆明市重点中学2026届高二数学第一学期期末考试模拟试题含解析_第2页
云南省昆明市重点中学2026届高二数学第一学期期末考试模拟试题含解析_第3页
云南省昆明市重点中学2026届高二数学第一学期期末考试模拟试题含解析_第4页
云南省昆明市重点中学2026届高二数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市重点中学2026届高二数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.62.在中,a,b,c分别为角A,B,C的对边,已知,,的面积为,则()A. B.C. D.3.在长方体中,,,则与平面所成的角的正弦值为()A. B.C. D.4.若,则的虚部为()A. B.C. D.5.下列椭圆中,焦点坐标是的是()A. B.C. D.6.已知椭圆的左右焦点分别为、,点在椭圆上,若、、是一个直角三角形的三个顶点,则点到轴的距离为A B.4C. D.7.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)8.对于公差为1的等差数列,;公比为2的等比数列,,则下列说法不正确的是()A.B.C.数列为等差数列D.数列的前项和为9.已知双曲线,则“”是“双曲线的焦距大于4”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知双曲线:()的离心率为,则的渐近线方程为()A. B.C. D.11.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列12.在正方体中,分别是线段的中点,则点到直线的距离是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与平行,则实数的值为_____________.14.函数,则函数在处切线的斜率为_______________.15.若,满足约束条件,则的最小值为______.16.如图,长方体中,,,,,分别是,,的中点,则异面直线与所成角为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点到准线的距离为4,直线与抛物线交于两点.(1)求此抛物线的方程;(2)若以为直径的圆过原点O,求实数k的值.18.(12分)在四棱锥中,平面,底面是边长为2的菱形,分别为的中点.(1)证明:平面;(2)求三棱锥的体积.19.(12分)已知椭圆M:的离心率为,左顶点A到左焦点F的距离为1,椭圆M上一点B位于第一象限,点B与点C关于原点对称,直线CF与椭圆M的另一交点为D(1)求椭圆M的标准方程;(2)设直线AD的斜率为,直线AB的斜率为.求证:为定值20.(12分)年月日,中国向世界庄严宣告,中国脱贫攻坚战取得了全面胜利,现行标准下万农村贫困人口全部脱贫,个贫困县全部摘帽,万个贫困村全部出列,区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务,困扰中华民族几千年的绝对贫困问题得到了历史性的解决!为了巩固脱贫成果,某农科所实地考察,研究发现某脱贫村适合种植、两种经济作物,可以通过种植这两种经济作物巩固脱贫成果,通过大量考察研究得到如下统计数据:经济作物的亩产量约为公斤,其收购价格处于上涨趋势,最近五年的价格如下表:年份编号年份单价(元/公斤)经济作物的收购价格始终为元/公斤,其亩产量的频率分布直方图如下:(1)若经济作物的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计年经济作物的单价;(2)用上述频率分布直方图估计经济作物的平均亩产量(每组数据以区间的中点值为代表),若不考虑其他因素,试判断年该村应种植经济作物还是经济作物?并说明理由附:,21.(12分)如图,已知在四棱锥中,平面,四边形为直角梯形,,,.(1)求直线与平面所成角的正弦值;(2)在线段上是否存在点,使得二面角的余弦值?若存在,指出点的位置;若不存在,说明理由.22.(10分)已知圆:,直线:.圆与圆关于直线对称(1)求圆的方程;(2)点是圆上的动点,过点作圆的切线,切点分别为、.求四边形面积的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用正态分布的计算公式:,【详解】且又故选:D2、C【解析】利用面积公式,求出,进而求出,利用余弦定理求出,再利用正弦定理求出【详解】由面积公式得:,因为的面积为,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故选:C3、D【解析】过点作的垂线,垂足为,由线面垂直判定可知平面,则所求角即为,由长度关系求得即可.【详解】在平面内过点作的垂线,垂足为,连接.,,,平面,平面,的正弦值即为所求角的正弦值,,,.故选:D.4、A【解析】根据复数的运算化简,由复数概念即可求解.【详解】因为,所以的虚部为,故选:A5、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B6、D【解析】设椭圆短轴的一个端点为根据椭圆方程求得c,进而判断出,即得或令,进而可得点P到x轴的距离【详解】解:设椭圆短轴的一个端点为M由于,,;,只能或令,得,故选D【点睛】本题主要考查了椭圆的基本应用考查了学生推理和实际运算能力是基础题7、A【解析】构造函数h(x)=f(x)g(x),由已知得当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,得函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,得到f(x)g(x)<0不等式的解集【详解】设h(x)=f(x)g(x),因为当x<0时,f(x)g(x)+f(x)g(x)<0,所以当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,因为f(﹣1)=0,所以函数y=h(x)的大致图象如下:所以等式f(x)g(x)<0的解集为(﹣1,0)∪(1,+∞)故选A【点睛】本题考查导数乘法法则、导数的符号与函数单调性的关系;奇函数的单调性在对称区间上一致,属于中档题8、B【解析】由等差数列的通项公式判定选项A正确;利用等比数列的通项公式求出,即判定选项B错误;利用对数的运算和等差数列的定义判定选项C正确;利用错位相减法求和,即判定选项D正确.【详解】对于A:由条件可得,,即选项A正确;对于B:由条件可得,,即选项B错误;对于C:因为,所以,则,即数列是首项和公差均为的等差数列,即选项C正确;对于D:,设数列的前项和为,则,,上面两式相减可得,所以,即选项D正确.故选:B.9、A【解析】先找出“双曲线的焦距大于4”的充要条件,再进行判断即可【详解】若的焦距,则;若,则故选:A10、A【解析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果【详解】∵双曲线的离心率,∴又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为故选:A11、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.12、A【解析】以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系,然后,列出计算公式进行求解即可【详解】如图,以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系.因为,所以,所以,则点到直线的距离故选:A二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】根据平行线的性质进行求解即可.【详解】因为直线与平行,所以有:或,故答案为:或14、【解析】根据导数的几何意义求解即可.【详解】解:因为,所以,所以,所以函数在处切线的斜率为故答案为:15、0【解析】作出约束条件对应的可行域,当目标函数过点时,取得最小值,求解即可.【详解】作出约束条件对应的可行域,如下图阴影部分,联立,可得交点为,目标函数可化为,当目标函数过点时,取得最小值,即.故答案为:0.【点睛】本题考查线性规划,考查数形结合的数学思想的应用,考查学生的计算求解能力,属于基础题.16、【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角.【详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,2,,,1,,,,设异面直线与所成角为,,异面直线与所成角为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据焦点到准线的距离,可得到,可得结果.(2)假设的坐标,得到,然后联立直线与抛物线的方程,利用韦达定理,根据,可得结果.【详解】(1)由题知:抛物线的焦点到准线的距离为,∴抛物线的方程为(2)设联立,得,则,,,∵以为直径圆过原点O,∴,∴,即,解得或(舍),∴【点睛】本题主要考查直线与抛物线的几何关系的应用,属基础题.18、(1)证明见解析(2)【解析】(1)取的中点,利用三角形中位线定理可证明BG//EF,由线线平行,可得线面平行;(2根据图像可得,以为底面,证明为高,利用三棱锥的体积公式,可得答案;【小问1详解】取的中点,因为为的中点,所以且,又因为为的中点,四边形为菱形,所以且,所以且,故四边形BFEG为平行四边形,所以BG//EF,因为面面,所以面.【小问2详解】因为底面是边长为2的菱形,,则为正三角形,所以因为面,所以为三棱锥的高所以三棱锥的体积.19、(1)(2)证明见解析【解析】(1)根据椭圆离心率公式,结合椭圆的性质进行求解即可;(2)设出直线CF的方程与椭圆方程联立,根据斜率公式,结合一元二次方程根与系数关系进行求解即可.【小问1详解】(1),,∴,,,∴;【小问2详解】设,,则,CF:联立∴,∴【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.20、(1),元/公斤;(2)应该种植经济作物;理由见解析【解析】(1)利用表格数据求出中心点值,再利用最小二乘法求出回归直线方程,进而利用所求方程进行预测;(2)先利用频率分布直方图的每个小矩形面积之和为1求得值,再利用平均值公式求其平均值,再比较两种作物的亩产量进行求解.【详解】(1),,则关于回归直线方程为当时,,即估计年经济作物的单价为元/公斤(2)利用频率和为得:,所以经济作物的亩产量的平均值为:,故经济作物亩产值为元,经济作物亩产值为元,应该种植经济作物21、(1);(2)存在,为上靠近点的三等分点【解析】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,求出的坐标以及平面的一个法向量,计算即可求解;(2)假设线段上存在点符合题意,设可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【详解】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,如图所示:则,,,.不妨设平面的一个法向量,则有,即,取.设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为;(2)假设线段上存在点,使得二面角的余弦值.设,则,从而,,.设平面的法向量,则有,即,取.设平面的法向量,则有,即,取.,解得:或(舍),故存在点满足条件,为上靠近点的三等分点【点睛】求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.22、(1)(2)【解析】(1)圆关于直线对称,半径不变,只需求出圆心对称的坐标即可.(2)将四边形面积分成两个全等的直角三角形,利用直角三角形的性质,一条直角边不变时,斜

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论