版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市众兴中学2026届高二上数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左顶点为,上顶点为,右焦点为,若,则椭圆的离心率的取值范围是()A. B.C. D.2.过抛物线()的焦点作斜率大于的直线交抛物线于,两点(在的上方),且与准线交于点,若,则A. B.C. D.3.已知直线,当变化时,所有直线都恒过点()A.B.C.D.4.变量,之间有如下对应数据:3456713111087已知变量与呈线性相关关系,且回归方程为,则的值是()A.2.3 B.2.5C.17.1 D.17.35.椭圆=1的一个焦点为F,过原点O作直线(不经过焦点F)与椭圆交于A,B两点,若△ABF的面积是20,则直线AB的斜率为()A. B.C. D.6.已知椭圆的右焦点为F,短轴的一个端点为P,直线与椭圆相交于A、B两点.若,点P到直线l的距离不小于,则椭圆C离心率的取值范围为()A. B.C. D.7.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.8.椭圆()的右顶点是抛物线的焦点,且短轴长为2,则该椭圆方程为()A. B.C. D.9.抛物线的焦点坐标是A. B.C. D.10.双曲线的离心率为,焦点到渐近线的距离为,则双曲线的焦距等于A. B.C. D.11.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A. B.C. D.12.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线,则的准线方程为______.14.在某次海军演习中,已知甲驱逐舰在航母的南偏东15°方向且与航母的距离为12海里,乙护卫舰在甲驱逐舰的正西方向,若测得乙护卫舰在航母的南偏西45°方向,则甲驱逐舰与乙护卫舰的距离为___________海里.15.已知等差数列的前项和为,则数列的前2022项的和为___________.16.双曲线上的一点到一个焦点的距离等于1,那么点到另一个焦点的距离为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,公差,前项和为,,且成等比数列(1)求数列的通项公式(2)设,求数列的前项和18.(12分)为了解某城中村居民收入情况,小明利用周末时间对该地在岗居民月收入进行了抽样调查,并将调查数据整理得到如下频率分布直方图:根据直方图估算:(1)在该地随机调查一位在岗居民,该居民收入在区间内的概率;(2)该地区在岗居民月收入的平均数和中位数;19.(12分)某学校一航模小组进行飞机模型飞行高度实验,飞机模型在第一分钟时间内上升了米高度.若通过动力控制系统,可使飞机模型在以后的每一分钟上升的高度都是它在前一分钟上升高度的(1)在此动力控制系统下,该飞机模型在第三分钟内上升的高度是多少米?(2)这个飞机模型上升的最大高度能超过米吗?如果能,求出从第几分钟开始高度超过米;如果不能,请说明理由20.(12分)如图,在四棱锥中,底面,,,,,为上一点,且.请用空间向量知识解答下列问题:(1)求证:平面;(2)求平面与平面夹角的大小.21.(12分)已知函数(1)讨论函数的单调性;(2)若,证明:22.(10分)根据下列条件求圆的方程:(1)圆心在点O(0,0),半径r=3(2)圆心在点O(0,0),且经过点M(3,4)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意得到,根据,化简得到,进而得到离心率的不等式,即可求解.【详解】由题意,椭圆的左顶点为,上顶点为,所以,,因为,可得,即,又由,可得,可得,解得,又因为椭圆的离心率,所以,即椭圆的离心率为.故选:B.【点睛】求解椭圆或双曲线离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.2、A【解析】分别过作准线的垂线,垂足分别为,设,则,,故选A.3、D【解析】将直线方程整理为,从而可得直线所过的定点.【详解】可化为,∴直线过定点,故选:D.4、D【解析】将样本中心点代入回归方程后求解【详解】,,将样本中心点代入回归方程,得故选:D5、A【解析】分情况讨论当直线AB的斜率不存在时,可求面积,检验是否满足条件,当直线AB的斜率存在时,可设直线AB的方程y=kx,联立椭圆方程,可求△ABF2的面积为S=2代入可求k【详解】由椭圆=1,则焦点分别为F1(-5,0),F2(5,0),不妨取F(5,0)①当直线AB的斜率不存在时,直线AB的方程为x=0,此时AB=4,=AB•5=×5=10,不符合题意;②可设直线AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面积为S=2=2××5×=20,∴k=±故选:A6、D【解析】设椭圆的左焦点为,由题可得,由点P到直线l的距离不小于可得,进而可求的范围,即可得出离心率范围.【详解】设椭圆的左焦点为,P为短轴的上端点,连接,如图所示:由椭圆的对称性可知,A,B关于原点对称,则,又,∴四边形为平行四边形,∴,又,解得:,点P到直线l距离:,解得:,即,∴,∴.故选:D.【点睛】关键点睛:本题考查椭圆离心率的求解,解题的关键是由椭圆定义得出,再根据已知条件得出.7、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.8、A【解析】求得抛物线的焦点从而求得,再结合题意求得,即可写出椭圆方程.【详解】因为抛物线的焦点坐标为,故可得;又短轴长为2,故可得,即;故椭圆方程为:.故选:.9、D【解析】根据抛物线的焦点坐标为可知,抛物线即的焦点坐标为,故选D.考点:抛物线的标准方程及其几何性质.10、D【解析】不妨设双曲线方程为,则,即设焦点为,渐近线方程为则又解得.则焦距为.选:D11、A【解析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从5个点中任取3个有共种不同取法,3点共线只有与共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为.故选:A【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.12、A【解析】根据命题与它的否定命题一真一假,写出该命题的否定命题,再求实数的取值范围【详解】解:命题“,”是假命题,则它的否定命题“,”是真命题,时,不等式为,显然成立;时,应满足,解得,所以实数的取值范围是故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据抛物线的方程求出的值即得解.【详解】解:因为抛物线,所以,所以的准线方程为.故答案为:14、【解析】利用正弦定理求得甲驱逐舰与乙护卫舰的距离.【详解】,设甲乙距离,由正弦定理得.故答案为:15、【解析】先设等差数列的公差为,根据题中条件,求出首项和公差,得出前项和,再由裂项相消的方法,即可求出结果.【详解】设等差数列的公差为,因为,,所以,解得,因此,所以,所以数列的前2022项的和为.故答案:.16、【解析】首先将已知的双曲线方程转化为标准方程,然后根据双曲线的定义知双曲线上的点到两个焦点的距离之差的绝对值为,即可求出点到另一个焦点的距离为17.考点:双曲线的定义.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据成等比数列,有,即求解.(2)由(1)可得,,∴,再利用裂项相消法求和.【详解】(1)由成等比数列,得,即,整理得,∵,∴,∴,即(2)由(1)可得,,∴,故【点睛】本题主要考查等差数列的基本运算和裂项相消法求和,还考查了运算求解的能力,属于中档题.18、(1)(2)平均数为;中位数为.【解析】(1)直接根据概率和为1计算得到答案.(2)根据平均数和中位数的定义直接计算得到答案.【小问1详解】该居民收入在区间内的概率为:【小问2详解】居民月收入的平均数为:.第一组概率为,第二组概率为,第三组概率为,设居民月收入的中位数为,则,解得.19、(1);(2)不能,理由见解析.【解析】(1)由题得每分钟上升的高度构成等比数列,再利用等比数列的通项求解;(2)求出即得解.【小问1详解】解:由题意,飞机模型每分钟上升的高度构成,公比的等比数列,则米.即飞机模型在第三分钟内上升的高度是米.【小问2详解】解:不能超过米.依题意可得,所以这个飞机模型上升的最大高度不能超过米.20、(1)证明见解析(2)【解析】(1)以为原点,、、分别为轴、轴、轴建立空间直角坐标系,证明出,,结合线面垂直的判定定理可证得结论成立;(2)利用空间向量法可求得平面与平面夹角的大小.【小问1详解】证明:底面,,故以为原点,、、分别为轴、轴、轴建立如图所示的空间直角坐标系,则、、、、、,所以,,,,则,,即,,又,所以,平面.【小问2详解】解:知,,,设平面的法向量为,则,,即,令,可得,设平面的法向量为,由,,即,令,可得,,因此,平面与平面夹角的大小为.21、(1)当时,在上单调递增;当时,在上单调递减,在上单调递增;(2)见详解【解析】(1)对函数进行求导,然后根据参数进行分类讨论;(2)构造函数,求函数的最小值即可证出.【详解】(1)的定义域为,.当时,在上恒成立,所以在上单调递增;当时,时,;时,,所以在上单调递减,在上单调递增.综上所述,当时,在上单调递增;当时,在上单调递减,在上单调递增.(2)当时,.令,,则.,令,.恒成立,所以在上单调递增.因为,,所以存在唯一的,使得,即.①当时,,即,所以在上单调递减;当时,,即,所以在上单调递增.所以,,②方法一:把①代入②得,.设,.则恒成立,所以在上单调递减,所以.因为,所以,即,所以,所以时,.方法二:设,.则,所以在上单调递增,所以,所以.因为,所以,所以,所以时,.【点睛】不等式证明问题是近年高考命题的热点,利用导数证明不等式的方法主要有两个:(1)不等式两边作差构造函数,利用导数研究函数的单调性,求出函数最值即可;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全车喷漆协议书
- 工作正式合同范本
- 律师出租合同范本
- 租车行借车协议书
- 窗户订购合同范本
- 房屋承诺合同范本
- 租赁演出车协议书
- 电脑维修合同范本
- 绳缆购销合同范本
- 偿寻物的协议书
- 水箱安装施工质量管理方案
- 2025年国企人力资源管理岗招聘考试专业卷(含岗位说明书)解析与答案
- 光伏电厂防火安全培训课件
- 小学数学单位换算表(高清可打印)
- 千县工程县医院微创介入中心综合能力建设评价标准
- 交通事故处理讲解
- 常考重难易错名校押题卷(含答案)-人教部编版五年级上册语文高效培优测试
- 2025年重大公共卫生服务服务项目工作方案
- 市政工程地基处理技术培训
- 边角料管理办法
- 《WPS AI智能办公应用大全》全套教学课件
评论
0/150
提交评论