2026届山东省六地市部分学校高二上数学期末监测试题含解析_第1页
2026届山东省六地市部分学校高二上数学期末监测试题含解析_第2页
2026届山东省六地市部分学校高二上数学期末监测试题含解析_第3页
2026届山东省六地市部分学校高二上数学期末监测试题含解析_第4页
2026届山东省六地市部分学校高二上数学期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省六地市部分学校高二上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的左、右焦点分别为、,P为双曲线C的右支上一点.以O为圆心a为半径的圆与相切于点M,且,则该双曲线的渐近线为()A. B.C. D.2.设,,则“”是“”的A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.已知、,则直线的倾斜角为()A. B.C. D.4.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,如果输入a=102,b=238,则输出的a的值为()A.17 B.34C.36 D.685.已知函数,在定义域内任取一点,则使的概率是()A. B.C. D.6.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.7.已知锐角的内角A,B,C的对边分别为a,b,c,若向量,,,则的最小值为()A. B.C. D.8.已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A. B.C. D.9.设,则有()A. B.C. D.10.已知双曲线(,)的左,右焦点分别为,.若双曲线右支上存在点,使得与双曲线的一条渐近线垂直并相交于点,且,则双曲线的渐近线方程为()A. B.C. D.11.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题12.设,则当数列{an}的前n项和取得最小值时,n的值为()A.4 B.5C.4或5 D.5或6二、填空题:本题共4小题,每小题5分,共20分。13.设,则动点P的轨迹方程为________14.已知点,则线段的垂直平分线的一般式方程为__________.15.已知平面的一个法向量为,点为内一点,则点到平面的距离为___________.16.抛物线的准线方程为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前n项和为,且满足.(1)证明为等比数列,并求数列通项公式;(2)在(1)的条件下,设,求数列的前项和.18.(12分)已知椭圆的长轴在轴上,长轴长为4,离心率为,(1)求椭圆的标准方程,并指出它的短轴长和焦距.(2)直线与椭圆交于两点,求两点的距离.19.(12分)(1)已知:方程表示双曲线;:关于的不等式有解.若为真,求的取值范围;(2)已知,,.若p是q的必要不充分条件,求实数m的取值范围.20.(12分)设数列的前项和为,,且满足,.(1)求数列的通项公式;(2)证明:对一切正整数,有.21.(12分)在平面直角坐标系中,已知双曲线C的焦点为、,实轴长为.(1)求双曲线C的标准方程;(2)过点的直线l与曲线C交于M,N两点,且Q恰好为线段的中点,求直线l的方程.22.(10分)如图,已知圆锥SO底面圆的半径r=1,直径AB与直径CD垂直,母线SA与底面所成的角为.(1)求圆锥SO的侧面积;(2)若E为母线SA的中点,求二面角E-CD-B的大小.(结果用反三角函数值表示)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】连接、,利用中位线定理和双曲线定义构建参数关系,即求得渐近线方程.【详解】如图,连接、,∵M是的中点,∴是的中位线,∴,且,根据双曲线的定义,得,∴,∵与以原点为圆心a为半径的圆相切,∴,可得,中,,即得,,解得,即,得.由此得双曲线的渐近线方程为.故选:A.【点睛】本题考查了双曲线的定义的应用和渐近线的求法,属于中档题.2、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.3、B【解析】设直线的倾斜角为,利用直线的斜率公式求出直线的斜率,进而可得出直线的倾斜角.【详解】设直线的倾斜角为,由斜率公式可得,,因此,.故选:B.4、B【解析】根据程序框图所示代入运行即可.【详解】初始输入:;第一次运算:;第二次运算:;第三次运算:;第四次运算:;结束,输出34.故选:B.5、A【解析】解不等式,根据与长度有关的几何概型即可求解.【详解】由题意得,即,由几何概型得,在定义域内任取一点,使的概率是.故选:A.6、B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B7、C【解析】由,得到,根据正弦、余弦定理定理化简得到,化简得到,再结合基本不等式,即可求解.【详解】由题意,向量,,因为,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因为,所以,由,所以,因为是锐角三角形,且,可得,解得,所以,所以,当且仅当,即时等号成立,故的最小值为.故选:C8、A【解析】由椭圆方程可求得坐标,由此求得抛物线方程;设,与抛物线方程联立可得韦达定理的形式,根据可得,由此构造方程求得,根据直线过定点的求法可求得定点.【详解】由椭圆方程知其焦点坐标为,又抛物线焦点,,解得:,则抛物线的方程为,由题意知:直线斜率不为,可设,由得:,则,即,设,,则,,,,,解得:或;又与坐标原点不重合,,,当时,,直线恒过定点.故选:A.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于或的一元二次方程的形式;②利用求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.9、A【解析】利用作差法计算与比较大小即可求解.【详解】因为,,所以,所以,故选:A.10、B【解析】利用渐近线方程和直线解出Q点坐标,再由得P点坐标,代入双曲线方程得到a、b、c的齐次式可解.【详解】如图,因为与渐近线垂直所以的斜率为,方程为解的Q的坐标为设P点坐标为则,因为,所以,得点P坐标为,代入得:所以,即所以渐近线方程为故选:B.11、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A12、A【解析】结合等差数列的性质得到,解不等式组即可求出结果.【详解】由,即,解得,因为,故.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线的定义可得答案.【详解】因为,所以动点P的轨迹是焦点为A,B,实轴长为4的双曲线的上支.因为,所以,所以动点P的轨迹方程为故答案为:.14、【解析】由中点坐标公式和斜率公式可得的中点和直线斜率,由垂直关系可得垂直平分线的斜率,由点斜式可得直线方程,化为一般式即可【详解】由中点坐标公式可得,的中点为,可得直线的斜率为,由垂直关系可得其垂直平分线的斜率为,故可得所求直线的方程为:,化为一般式可得故答案为:15、1【解析】利用空间向量求点到平面的距离即可.【详解】,,∴则点P到平面的距离为.故答案为:1.16、【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2p=1,∴其准线方程是y=,故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2).【解析】(1)利用与的关系求数列的递推关系,即得证明结论,并根据等比数列求通项公式;(2)根据(1)的结果求出,再分和,求.【详解】(1)当时,,,当时,,与已知式作差得,即,又,∴,∴,故数列是以为首项,2为公比的等比数列,所以(2)由(1)知,∴,若,,若,,∴.【点睛】关键点点睛:本题的关键是第二问弄清楚数列与的前项和的关系,在分段求数列的前项和.18、(1),短轴长为,焦距为;(2).【解析】(1)由长轴得,再由离心率求得,从而可得后可得椭圆方程;(2)直线方程与椭圆方程联立方程组求得交点坐标后可得距离【详解】(1)由已知:,,故,,则椭圆的方程为:,所以椭圆的短轴长为,焦距为.(2)联立,解得,,所以,,故19、(1)1m2;(2)(0,1]【解析】(1)由pq为真,可得p真且q假,然后分别求出p真,q假时的的取值范围,再求交集即可,(2)求得p:1x2,再由p是q的必要不充分条件,得,解不等式组可求得答案【详解】(1)因为pq为真,所以p真且q假,p真:m1m301m3,q假,则不等式无解,则402m2,所以1m2.(2)依题意,p:1x2,因p是q的必要不充分条件,于是得(不同时取等号),解得0m1,所以实数m的取值范围是(0,1].20、(1),;(2)证明见解析.【解析】(1)利用关系可得,根据等比数列的定义易知为等比数列,进而写出的通项公式;(2)由,将不等式左侧放缩,即可证结论.【小问1详解】当时,,,两式相减得:,整理可得:,而,所以是首项为2,公比为1的等比数列,故,即,.【小问2详解】,..21、(1)(2).【解析】(1)根据条件,结合双曲线定义即可求得双曲线的标准方程.(2)当斜率不存在时,不符合题意;当斜率存在时,设出直线方程,联立双曲线,变形后由中点坐标公式可求得斜率,即可求得直线方程.【详解】(1)根据题意,焦点在轴上,且,所以,双曲线的标准方程为C:.(2)过点的直线l与曲线C交于M,N两点,且Q恰好为线段的中点,当直线斜率不存在时,直线方程为,则由双曲线对称性可知线段的中点在轴上,所以不满足题意;当斜率存在时,设直线方程为,设,则,化简可得,因为有两个交点,所以化简可得恒成立,所以,因为恰好为线段的中点,则,化简可得,所以直线方程为,即.【点睛】本题考查根据双曲线定义求双曲线标准方程,直线与双曲线的位置关系,由中点坐标求直线方程,属于中档

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论