新疆哈密市十五中2026届高二上数学期末考试试题含解析_第1页
新疆哈密市十五中2026届高二上数学期末考试试题含解析_第2页
新疆哈密市十五中2026届高二上数学期末考试试题含解析_第3页
新疆哈密市十五中2026届高二上数学期末考试试题含解析_第4页
新疆哈密市十五中2026届高二上数学期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆哈密市十五中2026届高二上数学期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于圆上任意一点的值与x,y无关,有下列结论:①当时,r有最大值1;②在r取最大值时,则点的轨迹是一条直线;③当时,则.其中正确的个数是()A.3 B.2C.1 D.02.直线的倾斜角,则其斜率的取值范围为()A. B.C. D.3.高二某班共有60名学生,其中女生有20名,“三好学生”人数是全班人数的,且“三好学生”中女生占一半.现从该班学生中任选1人参加座谈会,则在已知没有选上女生的条件下,选上的学生是“三好学生”的概率为()A. B.C. D.4.某学生2021年共参加10次数学竞赛模拟考试,成绩分别记为,,,…,,为研究该生成绩的起伏变化程度,选用一下哪个数字特征最为合适()A.,,,…,的平均值; B.,,,…,的标准差;C.,,,…,的中位数; D.,,,…,的众数;5.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.6.已知实数a,b,c满足,,则a,b,c的大小关系为()A. B.C. D.7.三棱锥A-BCD中,E,F,H分别为边CD,AD,BC的中点,BE,DH的交点为G,则的化简结果为()A. B.C. D.8.已知空间向量,则()A. B.C. D.9.将点的极坐标化成直角坐标是(

)A. B.C. D.10.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.11.已知双曲线的右焦点为,以为圆心,以为半径的圆与双曲线的一条渐近线交于,两点,若(为坐标原点),则双曲线的离心率为().A. B.C. D.12.已知,,则下列结论一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在直棱柱中,,则异面直线与所成角的余弦值为___________.14.命题“任意,”为真命题,则实数a的取值范围是______.15.曲线在处的切线方程是________.16.数列的前项和为,若,则=____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知幂函数在上单调递减,函数的定义域为集合A(1)求m的值;(2)当时,的值域为集合B,若是成立的充分不必要条件,求实数的取值范围18.(12分)如图,已知抛物线的焦点为,点是轴上一定点,过的直线交与两点.(1)若过的直线交抛物线于,证明纵坐标之积为定值;(2)若直线分别交抛物线于另一点,连接交轴于点.证明:成等比数列.19.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为6.(1)求抛物线的方程;(2)若不过原点的直线与抛物线交于A、B两点,且,求证:直线过定点并求出定点坐标.20.(12分)如图,在正方体中,为的中点,点在棱上(1)若,证明:与平面不垂直;(2)若平面,求平面与平面的夹角的余弦值21.(12分)已知数列是等差数列,(1)求的通项公式;(2)求的最大项22.(10分)已知:圆是的外接圆,边所在直线的方程为,中线所在直线的方程为,直线与圆相切于点.(1)求点和点的坐标;(2)求圆的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,圆在两直线内部,则,的距离为,则,,对于①,当时,r有最大值1,得出结论;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,得出结论;对于③当时,则得出结论.【详解】设,故可以看作点到直线与直线距离之和的倍,的取值与,无关,这个距离之和与点在圆上的位置无关,可知直线平移时,点与直线,的距离之和均为,的距离,即此时圆在两直线内部,,的距离为,则,对于①,当时,r有最大值1,正确;对于②在r取最大值时,则点的轨迹是一条平行与,的直线,正确;对于③当时,则即,解得或,故错误.故正确结论有2个,故选:B.2、B【解析】根据倾斜角和斜率的关系,确定正确选项.【详解】直线的倾斜角为,则斜率为,在上为增函数.由于直线的倾斜角,所以其斜率的取值范围为,即.故选:B【点睛】本小题主要考查倾斜角和斜率的关系,属于基础题.3、C【解析】设事件表示“选上的学生是男生”,事件表示“选上的学生是三好学生,求出和,利用条件概率公式计算即可求解.【详解】设事件表示“选上的学生是男生”,事件表示“选上的学生是‘三好学生’”,则所求概率为.由题意可得:男生有人,“三好学生”有人,所以“三好学生”中男生有人,所以,,故.故选:C.4、B【解析】根据平均数、标准差、中位数及众数的概念即得.【详解】根据平均数、中位数、众数的概念可知,平均数、中位数、众数描述数据的集中趋势,标准差描述数据的波动大小估计数据的稳定程度.故选:B.5、A【解析】由题意可知,对任意的恒成立,可得出对任意的恒成立,利用基本不等式可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,所以,对任意的恒成立,由基本不等式可得,当且仅当时,等号成立,所以,.故选:A.6、A【解析】利用对数的性质可得,,再构造函数,利用导数判断,再构造,利用导数判断出函数的单调性,再由单调性即可求解.【详解】由题意可得均大于,因为,所以,所以,且,令,,当时,,所以在单调递增,所以,所以,即,令,,当时,,所以在上单调递减,由,,所以,所以,综上所述,.故选:A7、D【解析】依题意可得为的重心,由三角形重心的性质可知,由中位线定理可知,再利用向量的加法运算法则即可求出结果【详解】解:依题意可得为的重心,,,分别为边,和的中点,,,故选:D8、A【解析】求得,即可得出.【详解】,,,.故选:A.9、A【解析】本题考查极坐标与直角坐标互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A10、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.11、A【解析】设双曲线的一条渐近线方程为,为的中点,可得,由,可知为的三等分点,用两种方式表示,可得关于的方程组,结合即可得到双曲线的离心率.【详解】设双曲线的一条渐近线方程为,为的中点,可得,由到渐近线的距离为,所以,又,所以,因为,所以,整理可得:,即,所以,可得,所以,所以双曲线的离心率为,故选:A.12、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系后求相关的向量后再用夹角公式运算即可.【详解】如图,以C为坐标原点,所在直线为x,y,z轴,建立空间直角坐标系,则,所以,所以,故异面直线与所成角的余弦值为,故答案为:.14、【解析】分离常数,将问题转化求函数最值问题.【详解】任意,恒成立恒成立,故只需,记,,易知,所以.故答案为:15、【解析】求出函数的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.【详解】解:由函数知,把代入得到切线的斜率则切线方程为:,即.故答案为:【点睛】本题考查导数的几何意义,属于基础题16、【解析】利用裂项相消法求和即可.【详解】解:因为,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据幂函数的定义和单调性求解;(2)利用根式函数的定义域和值域求得集合A,B,再由是A的真子集求解.【小问1详解】解:因为幂函数在上单调递减,所以,解得.【小问2详解】由,得,解得,所以,当时的值域为,所以,因为是成立的充分不必要条件,所以是A的真子集,,解得.18、(1)证明见解析(2)证明见解析【解析】(1)设直线方程为,联立抛物线方程用韦达定理可得;(2)借助(1)中结论可得各点纵坐标之积,进而得到F、T、Q三点横坐标关系,然后可证.【小问1详解】显然过T的直线斜率不为0,设方程为,联立,消元得到,.【小问2详解】由(1)设,因为AP与BQ均过T(t,0)点,可知,又AB过F点,所以,如图:,,设M(n,0),由(1)类比可得.,且,成等比数列.19、(1)(2)证明见解析,定点坐标为(8,0).【解析】(1)根据抛物线的定义,即可求出结果;(2)由题意直线方程可设为,将其与抛物线方程联立,再将转化为,根据韦达定理,化简求解,即可求出定点.【小问1详解】解:抛物线的顶点在原点,焦点在轴上,且抛物线上有一点,设抛物线的方程为,到焦点的距离为6,即有点到准线的距离为6,即解得,即抛物线的标准方程为;【小问2详解】证明:由题意知直线不能与轴平行,故直线方程可设为,与抛物线联立得,消去得,设,则,则,,由,可得,所以,即,亦即,又,解得,所以直线方程为,易得直线过定点.20、(1)证明见解析(2)【解析】(1)设正方体的棱长为,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算出,即可证得结论成立;(2)利用空间向量法可求得平面与平面的夹角的余弦值.【小问1详解】证明:以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,由得点的坐标为,,,因为,所以与不垂直,所以与平面不垂直【小问2详解】解:设,则,,因为平面,所以,所以,得,且,即,所以,,设平面的法向量为,由,取,可得,因为平面,所以平面的一个法向量为,所以,所以平面与平面所成夹角的余弦值为21、(1);(2).【解析】(1)利用等差数列的通项公式进行求解即可;(2)运用二次函数的性质进行求解即可.【小问1详解】设等差数列的公差为,所以有,所以;【小问2详解】由(1)可知:,当时,有最大项,最大项为:.22、(1)A(1,7),(2)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论