版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙南名校联盟数学高二上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的倾斜角为()A.150° B.120°C.60° D.30°2.已知等差数列的公差为,则“”是“数列为单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.等比数列的前项和为,若,则()A. B.8C.1或 D.或4.若空间中n个不同的点两两距离都相等,则正整数n的取值A.至多等于3 B.至多等于4C.等于5 D.大于55.已知三个观测点,在的正北方向,相距,在的正东方向,相距.在某次爆炸点定位测试中,两个观测点同时听到爆炸声,观测点晚听到,已知声速为,则爆炸点与观测点的距离是()A. B.C. D.6.已知两定点和,动点在直线上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的短轴的最小值为()A. B.C. D.7.2021年是中国共产党百年华诞,3月24日,中宣部发布中国共产党成立100周年庆祝活动标识(图1),标识由党徽、数字“100”“1921”“2021”和56根光芒线组成,生动展现中国共产党团结带领中国人民不忘初心、牢记使命、艰苦奋斗的百年光辉历程.其中“100”的两个“0”设计为两个半径为的相交大圆,分别内含一个半径为1的同心小圆,且同心小圆均与另一个大圆外切(图2).已知,在两大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.8.已知抛物线的方程为,则此抛物线的准线方程为()A. B.C. D.9.已知,若,则()A. B.C. D.10.设圆上的动点到直线的距离为,则的取值范围是()A. B.C. D.11.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.12.已知随机变量X的分布列如表所示,则()X123Pa2a3aA. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线过抛物线的焦点,且与的对称轴垂直,与交于,两点,,为的准线上一点,则的面积为________14.已知函数在处有极值.则=________15.在中,内角,,的对边分别为,,,若,且,则_______16.设函数为奇函数,当时,,则_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二次函数,令,解得.(1)求二次函数的解析式;(2)当关于的不等式恒成立时,求实数的范围.18.(12分)已知三棱柱中,面底面,,底面是边长为的等边三角形,,、分别在棱、上,且.(1)求证:底面;(2)在棱上找一点,使得和面所成角的余弦值为,并说明理由.19.(12分)已知椭圆经过点,左焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆的右顶点,过点且斜率为的直线交椭圆于两点,求的面积.20.(12分)已知集合,设(1)若p是q的充分不必要条件,求实数a的取值范围;(2)若¬q是¬p的必要不充分条件,求实数a的取值范围21.(12分)已知数列满足,(1)设,求证数列为等差数列,并求数列的通项公式;(2)设,数列的前n项和为,是否存在正整数m,使得对任意的都成立?若存在,求出m的最小值;若不存在,试说明理由22.(10分)记为等差数列的前n项和,已知.(1)求的通项公式;(2)求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由斜率得倾斜角【详解】直线的斜率为,所以倾斜角为30°.故选:D2、C【解析】利用等差数列的定义和数列单调性的定义判断可得出结论.【详解】若,则,即,此时,数列为单调递增数列,即“”“数列为单调递增数列”;若等差数列为单调递增数列,则,即“”“数列为单调递增数列”.因此,“”是“数列为单调递增数列”的充分必要条件.故选:C.3、C【解析】根据等比数列的前项和公式及等比数列通项公式即可求解.【详解】设等比数列的公比为,则因为,所以,即,解得或,所以或.故选:C.4、B【解析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;4个点两两距离相等,由三角形的两边之和大于第三边,则不成立;n大于4,也不成立;空间中,4个点两两距离相等,构成一个正四面体,成立;若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,第五个点,与它们距离相等,必为正四面体的外接球的球心,由三角形的两边之和大于三边,故不成立;同理n>5,不成立故选B点评:本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题5、D【解析】根据题意作出示意图,然后结合余弦定理解三角形即可求出结果.【详解】设爆炸点为,由于两个观测点同时听到爆炸声,则点位于的垂直平分线上,又在的正东方向且观测点晚听到,则点位于的左侧,,,,设,则,解得,则爆炸点与观测点的距离为,故选:D.6、B【解析】根据题意,点关于直线对称点的性质,以及椭圆的定义,即可求解.【详解】根据题意,设点关于直线的对称点,则,解得,即.根据椭圆的定义可知,,当、、三点共线时,长轴长取最小值,即,由且,得,因此椭圆C的短轴的最小值为.故选:B.7、B【解析】求出两圆相交公共部分两个弓形面积,结合两圆面积可得概率【详解】如图,是两圆心,是两圆交点坐标,四边形边长均为,又,所以,所以,四边形是正方形,,弓形面积为,两个弓形面积为,两圆涉及部分面积为所以所求概率为故选:B8、A【解析】由抛物线的方程直接写出其准线方程即可.【详解】由抛物线的方程为,则其准线方程为:故选:A9、B【解析】先求出的坐标,然后由可得,再根据向量数量积的坐标运算求解即可.【详解】因为,,所以,因为,所以,即,解得.故选:B10、C【解析】求出圆心到直线距离,再借助圆的性质求出d的最大值与最小值即可.【详解】圆的方程化为,圆心为,半径为1,则圆心到直线的距离,即直线和圆相离,因此,圆上的动点到直线的距离,有,,即,即的取值范围是:.故选:C11、D【解析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【点睛】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.12、C【解析】根据分布列性质计算可得;【详解】解:依题意,解得,所以;故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设出抛物线方程,写出准线方程和焦点坐标,利用得到抛物线方程,再利用三角形的面积公式进行求解.【详解】设抛物线的方程为,则焦点为,准线方程为,由题意,得,,,所以,解得,所以.故答案为:.14、4【解析】根据极值点概念求解【详解】,由题意得,,经检验满足题意故答案为:415、【解析】代入,展开整理得,①化为,与①式相加得,转化为关于的方程,求解即可得出结论.【详解】因为,所以,所以,因为,所以,则,整理得,解得.故答案为:.【点睛】本题考查正弦定理的边角互化,考查三角函数化简求值,属于中档题.16、【解析】由奇函数的定义可得,代入解析式即可得解.【详解】函数为奇函数,当时,,所以.故答案为-1.【点睛】本题主要考查了奇函数的求值问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用一元二次不等式的解集是,得到-3,2是方程的两个根,根据根与系数之间的关系,即可求,;(2)根据题意,得出不等式恒成立,则,解不等式即可求出实数的范围.详解】解:(1)由题可知,,解得:,则-3,2是方程的两个根,且,所以由根与系数之间的关系得,解得,所以二次函数的解析式为:;(2)由于不等式恒成立,即恒成立,则,解得:,所以实数的范围为.【点睛】本题考查由一元二次不等式的解集求函数解析式,以及不等式恒成立问题求参数范围,考查根与系数的关系和一元二次函数的图象和性质,考查化简运算能力18、(1)证明见解析;(2)为的中点,理由见解析.【解析】(1)取的中点,连接,利用面面垂直的性质定理可得出平面,可得出,再由,结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,设点,利用空间向量法可得出关于实数的方程,求出的值,即可得出结论.【详解】(1)取的中点,连接,如图:因为三角形是等边三角形,所以,又因为面底面,平面平面,面,所以平面,又面,所以,又,,平面;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、,在上找一点,其中,,,,设面的一个法向量,则,不妨令,则,和面所成角的余弦值为,则,解得或(舍),所以,为的中点,符合题意.19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由椭圆的定义求出的值,由求出,代入,得到椭圆的方程;(Ⅱ)由点斜式求出直线的方程,设,联立直线与椭圆方程,求出的值,再算出的面积试题解析(Ⅰ)由椭圆的定义得:又,故,∴椭圆的方程为:.(Ⅱ)过的直线方程为,,联立,设,则,∴的面积.点睛:本题主要考查了求椭圆的方程,直线与椭圆相交时弦长的计算等,属于中档题.在(Ⅱ)中,注意的面积的计算公式20、(1)(2)【解析】(1)先解出集合A、B,然后根据p是q的充分不必要条件列出不等式组求解.(2)¬q是¬p的必要不充分条件可知q是p的充分不必要条件,然后求解.【小问1详解】解:由题意得:,p是q的充分不必要条件,所以集合A是集合B的真子集∴,即,所以实数a的取值范围.【小问2详解】¬q是¬p的必要不充分条件p是q的必要不充分条件,即q是p的充分不必要条件集合B是集合A的真子集∴,故实数a的取值范围为21、(1);(2)存在,3【解析】(1)结合递推关系可证得bn+1-bn1,且b1=1,可证数列{bn}为等差数列,据此可得数列的通项公式;(2)结合通项公式裂项有求和有,再结合条件可得,即求【详解】(1)证明:∵,又由a1=2,得b1=1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年成都外国语学院单招职业适应性考试题库附答案详解
- 2026年广东交通职业技术学院单招职业技能考试题库及参考答案详解一套
- 2026年白城职业技术学院单招职业技能测试题库及参考答案详解一套
- 2026年广西质量工程职业技术学院单招综合素质考试题库及参考答案详解一套
- 2026年辽宁轨道交通职业学院单招职业适应性测试题库及答案详解一套
- 2026年安徽医学高等专科学校单招职业适应性考试题库及参考答案详解一套
- 2026年杭州万向职业技术学院单招职业倾向性考试题库及答案详解一套
- 2026年河南省周口市单招职业适应性考试题库及参考答案详解1套
- 2026年河南信息统计职业学院单招职业技能测试题库带答案详解
- 2026年内江卫生与健康职业学院单招职业技能考试题库及参考答案详解
- 2020-2021学年广东省广州市黄埔区二年级(上)期末数学试卷
- 财政部政府采购法律法规与政策学习知识考试题库(附答案)
- 长鑫存储在线测评题
- 2024年三级直播销售员(高级)职业技能鉴定考试复习题库(含答案)
- DL∕T 5344-2018 电力光纤通信工程验收规范
- DL∕T 2528-2022 电力储能基本术语
- T-CCIIA 0004-2024 精细化工产品分类
- 世界当代史教材
- 高压电动机保护原理及配置
- 《创伤失血性休克中国急诊专家共识(2023)》解读
- 全颈部清扫术手术配合
评论
0/150
提交评论