海南省海口市琼山区2025届高三冲刺模拟数学试卷含解析_第1页
海南省海口市琼山区2025届高三冲刺模拟数学试卷含解析_第2页
海南省海口市琼山区2025届高三冲刺模拟数学试卷含解析_第3页
海南省海口市琼山区2025届高三冲刺模拟数学试卷含解析_第4页
海南省海口市琼山区2025届高三冲刺模拟数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省海口市琼山区2025届高三冲刺模拟数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为()A. B. C. D.2.如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为()A. B. C. D.3.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.4.设函数,则函数的图像可能为()A. B. C. D.5.设函数满足,则的图像可能是A. B.C. D.6.已知数列的前项和为,且,,则()A. B. C. D.7.函数的大致图象为A. B.C. D.8.已知函数(e为自然对数底数),若关于x的不等式有且只有一个正整数解,则实数m的最大值为()A. B. C. D.9.已知数列为等比数列,若,且,则()A. B.或 C. D.10.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.011.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}12.若的展开式中的常数项为-12,则实数的值为()A.-2 B.-3 C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.实数满足,则的最大值为_____.14.已知为抛物线:的焦点,过作两条互相垂直的直线,,直线与交于、两点,直线与交于、两点,则的最小值为__________.15.在△ABC中,∠BAC=,AD为∠BAC的角平分线,且,若AB=2,则BC=_______.16.某地区连续5天的最低气温(单位:℃)依次为8,,,0,2,则该组数据的标准差为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:()的离心率为,且椭圆的一个焦点与抛物线的焦点重合.过点的直线交椭圆于,两点,为坐标原点.(1)若直线过椭圆的上顶点,求的面积;(2)若,分别为椭圆的左、右顶点,直线,,的斜率分别为,,,求的值.18.(12分)设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.(1)求椭圆的标准方程.(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.19.(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);(2)记每日生产平均成本求证:;(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.20.(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.21.(12分)在直角坐标系中,曲线的参数方程为(为参数,),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出其形状;(2)曲线与曲线交于,两点,若,求的值.22.(10分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

设左焦点的坐标,由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为:所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.2.C【解析】

利用正方体将三视图还原,观察可得最长棱为AD,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.3.D【解析】

利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.4.B【解析】

根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.5.B【解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质.由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B.6.C【解析】

根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.7.A【解析】

因为,所以函数是偶函数,排除B、D,又,排除C,故选A.8.A【解析】

若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,利用导数求出的最小值,分别画出与的图象,结合图象可得.【详解】解:,∴,设,∴,当时,,函数单调递增,当时,,函数单调递减,∴,当时,,当,,函数恒过点,分别画出与的图象,如图所示,,若不等式有且只有一个正整数解,则的图象在图象的上方只有一个正整数值,∴且,即,且∴,故实数m的最大值为,故选:A本题考查考查了不等式恒有一正整数解问题,考查了利用导数研究函数的单调性,考查了数形结合思想,考查了数学运算能力.9.A【解析】

根据等比数列的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,,.故选:A.本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.10.C【解析】

集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.11.D【解析】

解一元二次不等式化简集合,再由集合的交集运算可得选项.【详解】因为集合,故选:D.本题考查集合的交集运算,属于基础题.12.C【解析】

先研究的展开式的通项,再分中,取和两种情况求解.【详解】因为的展开式的通项为,所以的展开式中的常数项为:,解得,故选:C.本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13..【解析】

画出可行域,解出可行域的顶点坐标,代入目标函数求出相应的数值,比较大小得到目标函数最值.【详解】解:作出可行域,如图所示,则当直线过点时直线的截距最大,z取最大值.由同理,,取最大值.故答案为:.本题考查线性规划的线性目标函数的最优解问题.线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;若可行域不是封闭图形还是需要借助截距的几何意义来求最值.14.16.【解析】由题意可知抛物线的焦点,准线为设直线的解析式为∵直线互相垂直∴的斜率为与抛物线的方程联立,消去得设点由跟与系数的关系得,同理∵根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离∴,同理∴,当且仅当时取等号.故答案为16点睛:(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.利用定义可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径;(2)圆锥曲线中的最值问题,可利用基本不等式求解,但要注意不等式成立的条件.15.【解析】

由,求出长度关系,利用角平分线以及面积关系,求出边,再由余弦定理,即可求解.【详解】,,,,.故答案为:.本题考查共线向量的应用、面积公式、余弦定理解三角形,考查计算求解能力,属于中档题.16.【解析】

先求出这组数据的平均数,再求出这组数据的方差,由此能求出该组数据的标准差.【详解】解:某地区连续5天的最低气温(单位:依次为8,,,0,2,平均数为:,该组数据的方差为:,该组数据的标准差为1.故答案为:1.本题考查一组数据据的标准差的求法,考查平均数、方差、标准差的定义等基础知识,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

(1)根据抛物线的焦点求得椭圆的焦点,由此求得,结合椭圆离心率求得,进而求得,从而求得椭圆的标准方程,求得椭圆上顶点的坐标,由此求得直线的方程.联立直线的方程和椭圆方程,求得两点的纵坐标,由此求得的面积.(2)求得两点的坐标,设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,由此求得的值,根据在椭圆上求得的值,由此求得的值.【详解】(1)因为抛物线的焦点坐标为,所以椭圆的右焦点的坐标为,所以,因为椭圆的离心率为,所以,解得,所以,故椭圆的标准方程为.其上顶点为,所以直线:,联立,消去整理得,解得,,所以的面积.(2)由题知,,,设,.由题还可知,直线的斜率不为0,故可设:.由,消去,得,所以所以,又因为点在椭圆上,所以,所以.本小题主要考查抛物线的焦点,椭圆的标准方程和几何性质、直线与椭圆,三角形的面积等基础知识,考查推理论证能力、运算求解能力,化归与转化思想、数形结合思想、函数与方程思想.18.(1);(2)证明见解析,.【解析】

(1)根据离心率和的面积是得到方程组,计算得到答案.(2)先排除斜率为0时的情况,设,,联立方程组利用韦达定理得到,,根据化简得到,代入直线方程得到答案.【详解】(1)由题意可得,解得,,则椭圆的标准方程是.(2)当直线的斜率为0时,直线与直线关于轴对称,则直线与直线的斜率之和为零,与题设条件矛盾,故直线的斜率不为0.设,,直线的方程为联立,整理得则,.因为直线与直线的斜率之和为1,所以,所以,将,代入上式,整理得.所以,即,则直线的方程为.故直线恒过定点.本题考查了椭圆的标准方程,直线过定点问题,计算出是解题的关键,意在考查学生的计算能力和转化能力.19.(1);(2)证明见解析;(3)证明见解析.【解析】

(1)求得函数的导函数,由此求得求当日产量为吨时的边际成本.(2)将所要证明不等式转化为证明,构造函数,利用导数证得,由此证得不等式成立.(3)利用(2)的结论,判断出,由此结合对数运算,证得.【详解】(1)因为所以当时,(2)要证,只需证,即证,设则所以在上单调递减,所以所以,即;(3)因为又由(2)知,当时,所以所以所以本小题主要考查导数的计算,考查利用导数证明不等式,考查放缩法证明数列不等式,属于难题.20.(1)单调递增区间为,单调递减区间为;(2)【解析】

(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,,递增,当时,,递减.故的单调递增区间为,单调递减区间为.(2),,,设的根为,即有可得,,当时,,递减,当时,,递增.,所以,①当;②当时,设,递增,,所以.综上,.本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.21.(1),以为圆心,为半径的圆;(2)【解析】

(1)根据极坐标与直角坐标的互化公式,直接得到的直角坐标方程并判断形状;(2)联立直线参数方程与的直角坐标方程,根据直线参数方程中的几何意义结合求解出的值.【详解】解:(1)由,得,所以,即,.所以曲线是以为圆心,为半径的圆.(2)将代入,整理得.设点,所对应的参数分别为,,则,.,解得,则.本题考查极坐标与直角坐标的互化以及根据直线参数方程中的几何意义求值,难度一般.(1)极

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论