山东省邹城市一中2026届数学高二上期末教学质量检测试题含解析_第1页
山东省邹城市一中2026届数学高二上期末教学质量检测试题含解析_第2页
山东省邹城市一中2026届数学高二上期末教学质量检测试题含解析_第3页
山东省邹城市一中2026届数学高二上期末教学质量检测试题含解析_第4页
山东省邹城市一中2026届数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省邹城市一中2026届数学高二上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与直线垂直,则a=()A.-2 B.0C.0或-2 D.12.在三棱柱中,,,,则这个三棱柱的高()A1 B.C. D.3.中,内角A,B,C的对边分别为a,b,c,若,则等于()A. B.C. D.4.甲、乙、丙、丁共4名同学进行党史知识比赛,决出第1名到第4名的名次(名次无重复),其中前2名将获得参加市级比赛的资格,甲和乙去询问成绩,回答者对甲说:“很遗憾,你没有获得参加市级比赛的资格.”对乙说:“你当然不会是最差的.”从这两个回答分析,4人的排名有()种不同情况.A.6 B.8C.10 D.125.在等比数列中,,是方程的两个实根,则()A.-1 B.1C.-3 D.36.已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1 B.2C.-1 D.-27.已知等差数列为其前项和,且,且,则()A.36 B.117C. D.138.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.9.已知双曲线,其渐近线方程为,则a的值为()A. B.C. D.210.若数列为等差数列,数列为等比数列,则下列不等式一定成立的是()A. B.C. D.11.下列命题中正确的是()A.若为真命题,则为真命题B.在中“”是“”的充分必要条件C.命题“若,则或”的逆否命题是“若或,则”D.命题,使得,则,使得12.数列,,,,…,是其第()项A.17 B.18C.19 D.20二、填空题:本题共4小题,每小题5分,共20分。13.设空间向量,且,则___________.14.曲线在点M(π,0)处的切线方程为________15.滕王阁,江南三大名楼之一,因初唐诗人王勃所作《滕王阁序》中“落霞与孤鹜齐飞,秋水共长天一色”而名传千古,流芳后世.如图,在滕王阁旁地面上共线的三点,,处测得阁顶端点的仰角分别为,,.且米,则滕王阁高度___________米.16.若p:存在,使是真命题,则实数a的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为,,,…(1)写出,,,并证明数列是等比数列;(2)至少到哪一年的年底,企业的剩余资金会超过21千万元?(lg18.(12分)已知为数列的前n项和,,且,,其中为常数.(1)求证:数列为等差数列;(2)是否存在,使得是等差数列?并说明理由.19.(12分)如图,在四棱柱中,平面,底面ABCD满足∥BC,且(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.20.(12分)等差数列{an}的前n项和记为Sn,且.(1)求数列{an}的通项公式an(2)记数列的前n项和为Tn,若,求n的最小值.21.(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产.某医疗器械厂统计了口罩生产车间每名工人的生产速度,并将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等(1)估计口罩生产车间工人生产速度的中位数(结果写成分数的形式);(2)为了解该车间工人生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的年限),数据如下表:工龄x(单位:年)4681012生产速度y(单位:件/小时)4257626267根据上述数据求每名工人的生产速度y关于他的工龄x的回归方程,并据此估计该车间某位有16年工龄的工人的生产速度附:回归方程中斜率和截距的最小二乘估计公式为:,22.(10分)已知函数.(1)若,求的极值;(2)若有两个零点,求实数a取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】代入两直线垂直的公式,即可求解.【详解】因为两直线垂直,所以,解得:或.故选:C2、D【解析】先求出平面ABC的法向量,然后将高看作为向量在平面ABC的法向量上的投影的绝对值,则答案可求.【详解】设平面ABC的法向量为,而,,则,即有,不妨令,则,故,设三棱柱的高为h,则,故选:D.3、A【解析】由题得,进而根据余弦定理求解即可.【详解】解:依题意,即,所以,所以,由于,所以故选:A4、C【解析】由题可知甲不在前2名,乙不在最后一名,然后分类讨论可得答案.【详解】若甲是最后一名,则其他三人没有限制,4人排名即为,若甲是第三名,4人的排名为,所以4人的排名有种情况.故选:C5、B【解析】由韦达定理可知,结合等比中项的性质可求出.【详解】解:在等比数列中,由题意知:,,所以,,所以且,即.故选:B.6、D【解析】在四面体中,取定一组基底向量,表示出,,再借助空间向量数量积计算作答.【详解】四面体所有棱长均为2,则向量不共面,两两夹角都为,则,因点E,F分别为棱AB,CD的中点,则,,,所以.故选:D7、B【解析】根据等差数列下标的性质,,进而根据条件求出,然后结合等差数列的求和公式和下标性质求得答案.【详解】由题意,,即为递增数列,所以,又,又,联立方程组解得:.于是,.故选:B.8、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C9、A【解析】由双曲线方程,根据其渐近线方程有,求参数值即可.【详解】由渐近线,结合双曲线方程,∴,可得.故选:A.10、D【解析】对选项A,令即可检验;对选项B,令即可检验;对选项C,令即可检验;对选项D,设出等差数列的首项和公比,然后作差即可.【详解】若,则可得:,故选项A错误;若,则可得:,故选项B错误;若,则可得:,故选项C错误;不妨设的首项为,公差为,则有:则有:,故选项D正确故选:D11、B【解析】A选项,当一真一假时也满足条件,但不满足为真命题;B选项,可以使用正弦定理和大边对大角,大角对大边进行证明;C选项,利用逆否命题的定义进行判断,D选项,特称命题的否定,把存在改为任意,把结论否定,故可判断D选项.【详解】若为真命题,则可能均为真,或一真一假,则可能为真命题,也可能为假命题,故A错误;在中,由正弦定理得:,若,则,从而,同理,若,则由正弦定理得,,所以,故在中“”是“”的充分必要条件,B正确;命题“若,则或”的逆否命题是“若且,则”,故C错误;命题,使得,则,使得,故D错误.故选:B12、D【解析】根据题意,分析归纳可得该数列可以写成,,,……,,可得该数列的通项公式,分析可得答案.【详解】解:根据题意,数列,,,,…,,可写成,,,……,,对于,即,为该数列的第20项;故选:D.【点睛】此题考查了由数列的项归纳出数列的通项公式,考查归纳能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】根据,由求解.【详解】因为向量,且,所以,即,解得.故答案为:114、【解析】由题意可得,据此可得切线的斜率,结合切点坐标即可确定切线方程.【详解】由函数的解析式可得:,所求切线的斜率为:,由于切点坐标为,故切线方程为:.【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.15、【解析】设,由边角关系可得,,,在和中,利用余弦定理列方程,结合可解得的值,进而可得长.【详解】设,因为,,,所以,,,.在中,,即①.,在中,,即②,因为,所以①②两式相加可得:,解得:,则,故答案为:.16、【解析】将问题分离参数得到存在,使成立,可得结论.【详解】存在,使,即存在,使,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,证明见解析(2)至少到2026年的年底,企业的剩余资金会超过21千万元【解析】(1)由题意可知,,,,再结合等比数列的性质,即可求解(2)由(1)知,,则,令,再结合对数函数运算,即可求解【小问1详解】依题意知,,,,,所以,又,所以是首项为3,公比为1.5的等比数列.【小问2详解】由(1)知,,所以令,解得,所以,所以至少到2026年的年底,企业的剩余资金会超过21千万元18、(1)详见解析;(2)存在时是等差数列,详见解析.【解析】(1)利用与的关系可得,再结合条件即证;(2)由题可得,,若是等差数列,可得,进而可求数列的通项公式,即证.【小问1详解】∵,∴,∴,又,∴,∴,∴数列为等差数列;【小问2详解】∵,,∴,又,∴,若是等差数列,则,即,解得,当时,由,∴数列的奇数项构成的数列为首项为1,公差为2的等差数列,∴,即,为奇数,∴数列的偶数项构成的数列为首项为2,公差为2的等差数列,∴,即,为偶数,综上可得,当时,,,故存在时,使数列是等差数列.19、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)证明,根据得到,得到证明.(Ⅱ)如图所示,分别以为轴建立空间直角坐标系,平面的法向量,,计算向量夹角得到答案.【详解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如图所示:分别以为轴建立空间直角坐标系,则,,,,.设平面的法向量,则,即,取得到,,设直线与平面所成角为故.【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.20、(1)an=2n(2)100【解析】(1)由等差数列的通项公式列出方程组求解即可;(2)由裂项相消求和法得出,再由不等式的性质得出n的最小值.【小问1详解】设等差数列{an}的公差为d,依题意有解得,所以an=2n.【小问2详解】由(1)得,则,所以因为,即,解得n>99,所以n的最小值为100.21、(1)(2)80件/小时【解析】(1)先利用等差数列的通项公式和频率分布直方图各矩形的面积之和为1求出各组频率,再利用频率分布直方图求中位数;(2)先求出、,利用最小二乘法求出回归直线方程,再进行预测其生产速度.【小问1详解】解:设前4组的频率分别为,,,,公差为,由频率分布直方图,得,即,解得,则,,所以中位数为.【小问2详解】解:由题意,得,,由所给公式,得,,所以回归直线方程为,则当时,,即估计该车间某位有16年工龄的工人的生产速度为80件/小时.22、(1)极小值为,无极大值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论