版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市开福区长沙一中2026届高一数学第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知指数函数的图象过点,则()A. B.C.2 D.42.函数的定义域为D,若满足;(1)在D内是单调函数;(2)存在,使得在上的值域也是,则称为闭函数;若是闭函数,则实数的取值范围是()A. B.C. D.3.已知函数,,则()A.的最大值为 B.在区间上只有个零点C.的最小正周期为 D.为图象的一条对称轴4.已知光线每通过一块特制玻璃板,强度要减弱,要使通过玻璃板光线强度减弱到原来的以下,则至少需要重叠玻璃版块数为(参考数据:)()A.4 B.5C.6 D.75.已知的三个顶点、、及平面内一点满足,则点与的关系是()A.在的内部 B.在的外部C.是边上的一个三等分点 D.是边上的一个三等分点6.若直线与互相平行,则()A.4 B.C. D.7.下列说法正确的是A.截距相等的直线都可以用方程表示B.方程不能表示平行轴的直线C.经过点,倾斜角为直线方程为D.经过两点,的直线方程为8.已知函数的部分图象如图所示,下列说法错误的是()A.B.f(x)的图象关于直线对称C.f(x)在[-,-]上单调递减D.该图象向右平移个单位可得的图象9.若幂函数f(x)的图象过点(16,8),则f(x)<f(x2)的解集为A.(–∞,0)∪(1,+∞) B.(0,1)C.(–∞,0) D.(1,+∞)10.函数的定义域为()A.R B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某房屋开发公司用14400万元购得一块土地,该地可以建造每层的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层整幢楼房每平方米建筑费用提高640元.已知建筑5层楼房时,每平方米建筑费用为8000元,公司打算造一幢高于5层的楼房,为了使该楼房每平米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成____________层,此时,该楼房每平方米的平均综合费用最低为____________元12.已知幂函数在为增函数,则实数的值为___________.13.某超市对6个时间段内使用两种移动支付方式的次数用茎叶图作了统计,如图所示,使用支付方式的次数的极差为______;若使用支付方式的次数的中位数为17,则_______.支付方式A支付方式B420671053126m9114.已知函数(1)利用五点法画函数在区间上的图象(2)已知函数,若函数的最小正周期为,求的值域和单调递增区间;(3)若方程在上有根,求的取值范围15.已知正数、满足,则的最大值为_________16.直线3x+2y+5=0在x轴上的截距为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.求:(1)函数的单调递减区间,对称轴,对称中心;(2)当时,函数的值域18.(1)求a值以及函数的定义域;(2)求函数在区间上的最小值;(3)求函数的单调递增区间19.已知集合,集合(1)当时,求和(2)若,求实数m的取值范围20.已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记的值域分别为集合,设,若是成立的必要条件,求实数的取值范围.21.已知点及圆.(1)若直线过点且与圆心的距离为1,求直线的方程;(2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;(3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由指数函数过点代入求出,计算对数值即可.【详解】因为指数函数的图象过点,所以,即,所以,故选:C2、C【解析】先判定函数的单调性,然后根据条件建立方程组,转化为使方程有两个相异的非负实根,最后建立关于的不等式,解之即可.【详解】因为函数是单调递增函数,所以即有两个相异非负实根,所以有两个相异非负实根,令,所以有两个相异非负实根,令则,解得.故选.【点睛】本题考查了函数与方程,二次方程实根的分布,转化法,属于中档题.3、D【解析】首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;【详解】解:函数,可得的最大值为2,最小正周期为,故A、C错误;由可得,即,可知在区间上的零点为,故B错误;由,可知为图象的一条对称轴,故D正确故选:D4、D【解析】设至少需要经过这样的块玻璃板,则,即,两边同时取以10为底的对数,可得,进而求解即可,需注意【详解】设至少需要经过这样的块玻璃板,则,即,所以,即,因为,所以,故选:D【点睛】本题考查利用对数的运算性质求解,考查指数函数的实际应用5、D【解析】利用向量的运算法则将等式变形,得到,据三点共线的充要条件得出结论【详解】解:,,∴是边上的一个三等分点故选:D【点睛】本题考查向量的运算法则及三点共线的充要条件,属于基础题6、B【解析】根据直线平行,即可求解.【详解】因为直线与互相平行,所以,得当时,两直线重合,不符合题意;当时,符合题意故选:B.7、D【解析】A错误,比如过原点的直线,横纵截距均为0,这时就不能有选项中的式子表示;B当m=0时,表示的就是和y轴平行的直线,故选项不对C不正确,当直线的倾斜角为90度时,正切值无意义,因此不能表示.故不正确D根据直线的两点式得到斜率为,再代入一个点得到方程为:故答案为D8、C【解析】先根据图像求出即可判断A,利用正弦函数的对称轴及单调性即可判断BC,通过平移变换即可判断D.【详解】根据函数的部分图象,可得所以,故A正确;利用五点法作图,可得,可得,所以,令x,求得,为最小值,故函数的图象关于直线对称,故B正确:当时,,函数f(x)没有单调性,故C错误;把f(x)的图象向右平移个单位可得的图象,故D正确故选:C.9、D【解析】先根据幂函数f(x)的图象过点(16,8)求出α=>0,再根据幂函数的单调性得到0<x<x2,解不等式即得不等式的解集.【详解】设幂函数的解析式是f(x)=xα,将点(16,8)代入解析式得16α=8,解得α=>0,故函数f(x)在定义域是[0,+∞),故f(x)在[0,+∞)递增,故,解得x>1.故选D【点睛】(1)本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)幂函数在是增函数,,幂函数在是减函数,且以两条坐标轴为渐近线.10、B【解析】要使函数有意义,则需要满足即可.【详解】要使函数有意义,则需要满足所以的定义域为,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.15②.24000【解析】设公司应该把楼建成层,可知每平方米的购地费用,已知建筑5层楼房时,每平方米建筑费用为8000元,从中可得出建层的每平方米的建筑费用,然后列出式子求得其最小值,从而可求得答案【详解】设公司应该把楼建成层,则由题意得每平方米购地费用为(元),每平方米的建筑费用为(元),所以每平方米的平均综合费用为,当且仅当,即时取等号,所以公司应把楼层建成15层,此时,该楼房每平方米的平均综合费用最低为24000元,故答案为:15,2400012、4【解析】根据幂函数的定义和单调性,即可求解.【详解】解:为递增的幂函数,所以,即,解得:,故答案为:413、①.;②.【解析】根据极差,中位数的定义即可计算.【详解】解:由茎叶图可知:使用支付方式的次数的极差为:;使用支付方式的次数的中位数为17,易知:,解得:.故答案为:;.14、(1)(2)的值域为,单调递增区间为;(3)【解析】(1)取特殊点,列表,描点,连线,画出函数图象;(2)化简得到的解析式,进而求出值域,整体法求解单调递增区间;(3)整体法先得到,换元后得到在上有根,进而求出的取值范围.【小问1详解】作出表格如下:x0020-20在平面直角坐标系中标出以下五点,,,,,,用平滑的曲线连接起来,就是函数在区间上的图象,如下图:【小问2详解】,其中,由题意得:,解得:,故,故的值域为,令,解得:,所以的单调递增区间为:【小问3详解】因为,所以,则,令,则,所以方程在上有根等价于在上有根,因为,所以,解得:,故的取值范围是.15、【解析】利用均值不等式直接求解.【详解】因为且,所以,即,当且仅当,即时,等号成立,所以的最大值为.故答案为:.16、【解析】直接令,即可求出【详解】解:对直线令,得可得直线在轴上截距是,故答案:【点睛】本题主要考查截距的定义,需要熟练掌握,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)单调递减区间为;对称轴为,;对称中心为,;(2)【解析】(1)首先化简函数解析式得到,然后结合函数的图象与性质即可求出单调递减区间,对称轴和对称中心;(2)由求得,即可求出值域.【详解】(1)化简可得,由,,可得,,∴函数的单调递减区间为,令,可得,故函数的对称轴为,;令,得,故函数的对称中心为,(2)当时,,∴,∴,∴函数的值域为18、(1),;(2);(3)﹒【解析】(1)由f(1)=-2解得a,由1+x>0且3-x>0解得定义域;(2)化简f(x)解析式,根据x范围求出真数部分范围,即可求其最值;(3)根据复合函数单调性判断方法“同增异减”即可﹒【小问1详解】,解得;故,由,解得:,故函数的定义域是;【小问2详解】由(1)得,令得,则原函数为,由于该函数在上单调递减,∴,因此,函数在区间上的最小值是;【小问3详解】由(1)得:,令的对称轴是,故在递增,在递减,∴在递增,在递减,故函数单调递增区间为19、(1)(或者);(或者)(2)【解析】(1)代入,结合集合的并、补运算即得解;(2)分,两种情况讨论,列出不等关系,计算即得解【小问1详解】当时,所以(或者);(或者)【小问2详解】当时,则,解得当时,则,解得,所以m不存在综上所述,20、(1)(2)【解析】(1)根据幂函数的定义求解;(2)由条件可知,再根据集合之间的关系建立不等式求解即可.【小问1详解】由幂函数的定义得:,解得或,当时,在上单调递减,与题设矛盾,舍去;当时,上单调递增,符合题意;综上可知:.【小问2详解】由(1)得:,当时,,即.当时,,即,由是成立的必要条件,则,显然,则,即,所以实数的取值范围为.21、(1)或;(2);(3)不存在.【解析】(1)设出直线方程,结合点到直线距离公式,计算参数,即可.(2)证明得到点P为MN的中点,建立圆方程,即可.(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线的斜率,计算a的值,即可【详解】(1)直线斜率存在时,设直线的斜率为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 读书的好处议论文作文14篇范文
- 在线交易安全保证承诺书(5篇)
- 建筑砌墙劳务协议
- 2025年中电建电力运维管理有限公司招聘考试重点试题及答案解析
- 2025年宁波市北仑区小港街道办事处招聘编外人员1人模拟笔试试题及答案解析
- 2025金华义乌市属国有企业解说员公开招聘6人笔试重点题库及答案解析
- 2026天津市红桥区事业单位招聘23人考试核心题库及答案解析
- 会展展位租赁协议
- 项目合同管理模板及注意事项
- 旅游行业导游业务知识及服务质量绩效考核表
- 国家开放大学《机械设计基础》机考试题001-009参考答案
- 体外诊断试剂工作程序-全套
- 施工企业管理课件
- 《大卫-不可以》绘本
- DB32 4181-2021 行政执法案卷制作及评查规范
- JJF (苏) 178-2015 防潮柜温度、湿度校准规范-(现行有效)
- 创伤急救四大技术共46张课件
- 航海基础知识基础概念
- 小动物疾病学考试题
- 2014年9月英国访问学者(AV)带家属签证攻略
- 三相自耦变压器设计模版
评论
0/150
提交评论