2026届湖北省黄冈市蔡河中学高一上数学期末学业水平测试试题含解析_第1页
2026届湖北省黄冈市蔡河中学高一上数学期末学业水平测试试题含解析_第2页
2026届湖北省黄冈市蔡河中学高一上数学期末学业水平测试试题含解析_第3页
2026届湖北省黄冈市蔡河中学高一上数学期末学业水平测试试题含解析_第4页
2026届湖北省黄冈市蔡河中学高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北省黄冈市蔡河中学高一上数学期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则中元素的个数为()A.0 B.2C.3 D.42.已知函数为偶函数,且在上单调递增,,则不等式的解集为()A. B.C. D.3.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.4.毛主席的诗句“坐地日行八万里”描写的是赤道上的人即使坐在地上不动,也会因为地球自转而每天行八万里路程.已知我国四个南极科考站之一的昆仑站距离地球南极点约1050km,把南极附近的地球表面看作平面,则地球每自转πA.2200km B.C.1100km D.5.函数A.是奇函数且在区间上单调递增B.是奇函数且在区间上单调递减C.是偶函数且在区间上单调递增D.是偶函数且在区间上单调递减6.已知正方形的边长为4,动点从点开始沿折线向点运动,设点运动的路程为,的面积为,则函数的图像是()A. B.C. D.7.,,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.函数的零点个数为()A.2 B.3C.4 D.59.已知为圆的两条互相垂直的弦,且垂足为,则四边形面积的最大值为()A.10 B.13C.15 D.2010.已知,则下列不等式一定成立的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.给出下列四个命题:①函数y=2sin(2x-)的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限内为增函数;④存在实数α,使sinα+cosα=.以上四个命题中正确的有____(填写正确命题前面的序号).12.已知函数,若正实数,满足,则的最小值是____________13.函数f(x)=+的定义域为____________14.设函数在区间上的最大值和最小值分别为M、m,则___________.15.已知定义在上的函数满足:①;②在区间上单调递减;③的图象关于直线对称,则的解析式可以是________16.计算=_______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙两地相距1000千米,某货车从甲地匀速行驶到乙地,速度为v千米/小时(不得超过120千米/小时).已知该货车每小时的运输成本m(以元为单位)由可变部分和固定部分组成:可变部分与速度v(单位:km/h)的关系是;固定部分y2为81元(1)根据题意可得,货车每小时的运输成本m=________,全程行驶的时间为t=________;(2)求该货车全程的运输总成本与速度v的函数解析式;(3)为了使全程的运输总成本最小,该货车应以多大的速度行驶?18.已知集合A={x|x2-px+q=0},B={x|x2-x-6=0}(Ⅰ)若A∪B={-2,1,3},A∩B={3},用列举法表示集合A;(Ⅱ)若∅AB,且p+q>0,求p,q的值19.已知正三棱柱,是的中点求证:(1)平面;(2)平面平面20.某品牌手机公司的年固定成本为50万元,每生产1万部手机需增加投入20万元,该公司一年内生产万部手机并全部销售完当年销售量不超过40万部时,销售1万部手机的收入万元;当年销售量超过40万部时,销售1万部手机的收入万元(1)写出年利润万元关于年销售量万部的函数解析式;(2)年销售量为多少万部时,利润最大,并求出最大利润.21.旅游社为某旅游团包飞机去旅游,其中旅行社的包机费为15000元.旅游团中每人的飞机票按以下方式与旅行社结算:若旅游团人数在30人或30人以下,飞机票每张收费900元;若旅游团人数多于30人,则给予优惠,每多1人,机票费每张减少10元,但旅游团人数最多为75人(1)写出飞机票的价格关于旅游团人数的函数;(2)旅游团人数为多少时,旅行社可获得最大利润?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】先求出集合,再求,最后数出中元素的个数即可.【详解】因集合,,所以,所以,则中元素的个数为2个.故选:B2、A【解析】由题可得函数在上单调递减,,且,再利用函数单调性即得.【详解】因为函数为偶函数且在上单调逆增,,所以函数在上单调递减,,且,所以,所以,解得或,即的取值范围是.故选:A.3、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误4、C【解析】利用弧长公式求解.【详解】因为昆仑站距离地球南极点约1050km,地球每自转π所以由弧长公式得:l=1050×π故选:C5、A【解析】由可知是奇函数,排除,,且,由可知错误,故选6、D【解析】当在点的位置时,面积为,故排除选项.当在上运动时,面积为,轨迹为直线,故选选项.7、B【解析】根据充分条件、必要条件的定义判断即可;【详解】解:因为,,所以由不能推出,由能推出,故是的必要不充分条件故选:B8、B【解析】先用诱导公式得化简,再画出图象,利用数形结合即可【详解】由三角函数的诱导公式得,函数的零点个数,即方程的根的个数,即曲线()与的公共点个数.在同一坐标系中分别作出图象,观察可知两条曲线的交点个数为3,故函数的零点个数为3故选:B.9、B【解析】如图,作OP⊥AC于P,OQ⊥BD于Q,则|OP|2+|OQ|2=|OM|2=5,∴|AC|2+|BD|2=4(9-|OP|2)+4(9-|OQ|2)=52则|AC|·|BD|=,当时,|AC|·|BD|有最大值26,此时S四边形ABCD=|AC|·|BD|=×26=13,∴四边形ABCD面积的最大值为13故选B点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小10、B【解析】对于ACD,举例判断,对于B,分两种情况判断详解】对于A,若时,满足,而不满足,所以A错误,对于B,当时,则一定成立,当时,由,得,则,所以B正确,对于C,若时,满足,而不满足,所以C错误,对于D,若时,则满足,而不满足,所以D错误,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①②【解析】对于①,将x=代入得是对称轴,命题正确;对于②,由正切函数的图象可知,命题正确;对于③,正弦函数在上是增函数,但在第一象限不能说是增函数,所以③不正确;对于④,,最大值为,不正确;故填①②.12、9【解析】根据指数的运算法则,可求得,根据基本不等式中“1”的代换,化简计算,即可得答案.【详解】由题意得,所以,所以,当且仅当,即时取等号,所以的最小值是9故答案为:913、【解析】根据题意,结合限制条件,解指数不等式,即可求解.【详解】根据题意,由,解得且,因此定义域为.故答案为:.14、2【解析】,令,易得函数为奇函数,则,从而可得出答案.【详解】解:,令,因为,所以函数为奇函数,所以,即,所以,即.故答案为:2.15、(答案不唯一)【解析】取,结合二次函数的基本性质逐项验证可得结论.【详解】取,则,满足①,在区间上单调递减,满足②,的图象关于直线对称,满足③.故答案为:(答案不唯一).16、【解析】原式考点:三角函数化简与求值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2)(0<v≤120);(3)v=90km/h.【解析】(1)根据货车每小时的运输成本等于可变部分加上固定部分即可得出答案,再根据全程行驶的时间等于总里程除以速度即可得解;(2)根据货车全程运输总成本等于货车每小时的运输成本乘以时间即可得出答案;(3)根据函数解析式结合基本不等式即可得解.【详解】解:(1);(2)货车全程的运输总成本(0<v≤120)(3)=1800元,当且仅当,即v=90时,全程的运输总成本最小,所以为了使全程的运输总成本最小,该货车应以90km/h的速度行驶.18、(Ⅰ){3,1}(Ⅱ)p=6,q=9【解析】(Ⅰ)可求出B={-2,3},根据A∪B={-2,1,3},A∩B={3},即可求出集合A;(Ⅱ)根据条件∅AB即可得出A={-2},或{3},再根据p+q>0即可求出p,q的值【详解】(Ⅰ)B={-2,3};∵A∪B={-2,1,3},A∩B={3};∴A={3,1};(Ⅱ)∵∅AB;∴A={-2},或A={3};①若A={-2},则;∴p+q=0,不满足p+q>0;∴A≠{-2};②若A={3},则;满足p+q>0;∴p=6,q=9【点睛】考查描述法的定义,交集、并集的概念及运算,以及真子集的定义,韦达定理19、(1)见解析(2)见解析【解析】(1)连接,交于点,连结,由棱柱的性质可得点是的中点,根据三角形中位线定理可得,利用线面平行的判定定理可得平面;(2)由正棱柱的性质可得平面,于是,再由正三角形的性质可得,根据线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得结论.试题解析:(1)连接,交于点,连结,因为正三棱柱,所以侧面是平行四边形,故点是的中点,又因为是的中点,所以,又因为平面,平面,所以平面(2)因为正三棱柱,所以平面,又因为平面,所以,因为正三棱柱,是的中点,是的中点,所以,又因为,所以平面,又因为平面,所以平面平面【方法点晴】本题主要考查线面平行的判定定理、线面垂直及面面垂直的证明,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.20、(1);(2)年销售量为45万部时,最大利润为7150万元.【解析】(1)依题意,分和两段分别求利润=收入-成本,即得结果;(2)分和两段分别求函数的最大值,再比较两个最大值的大小,即得最大利润.【详解】解:(1)依题意,生产万部手机,成本是(万元),故利润,而,故,整理得,;(2)时,,开口向下的抛物线,在时,利润最大值为;时,,其中,在上单调递减,在上单调递增,故时,取得最小值,故在时,y取得最大值而,故年销售量为45万部时,利润最大,最大利润为7150万元.【点睛】方法点睛:分段函数求最值时,需要每一段均研究最值,再比较出最终的最值.21、(1).(2)旅游团人数为60时,旅行社可获得最大利润【解析】(1)根据自变量的取值范围,分0或,确定每张飞机票价的函数关系式;(Ⅱ)利用所有人的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论