版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省蒙城县一中高一上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若偶函数在区间上是减函数,是锐角三角形的两个内角,且,则下列不等式中正确的是()A. B.C. D.2.设为定义在上的偶函数,且在上为增函数,则的大小顺序是()A. B.C. D.3.已知直线经过点,倾斜角的正弦值为,则的方程为()A. B.C. D.4.定义在上的偶函数满足:对任意的,,,有,且,则不等式的解集为A. B.C. D.5.圆与圆的位置关系是()A.内含 B.内切C.相交 D.外切6.已知函数,则函数的最小正周期为A. B.C. D.7.若关于x的方程log12x=m1-mA.(0,1) B.(1,2)C.(-∞,1)∪(2,+∞) D.(-∞,0)∪(1,+∞)8.玉溪某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产件,则平均仓储时间为天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品A.60件 B.80件C.100件 D.120件9.已知,则()A. B.C. D.10.如图,在正三棱柱中,,若二面角的大小为,则点C到平面的距离为()A.1 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________12.若函数在区间上为增函数,则实数的取值范围为______.13.已知函数,,若不等式恰有两个整数解,则实数的取值范围是________14.已知函数,正实数,满足,且,若在区间上的最大值为2,则________.15.在三棱锥中,,,,则三棱锥的外接球的表面积为________.16.已知函数(1)利用五点法画函数在区间上的图象(2)已知函数,若函数的最小正周期为,求的值域和单调递增区间;(3)若方程在上有根,求的取值范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线经过直线与直线的交点,且与直线垂直.(1)求直线的方程;(2)若直线与圆相交于两点,且,求的值.18.已知,.(1)求的值;(2)求的值;(3)求的值.19.(1)设,求与的夹角;(2)设且与的夹角为,求的值.20.计算(1);(2).21.在直角坐标平面内,角α的顶点为坐标原点O,始边为x轴正半轴,终边经过点,分别求sinα、cosα、tanα的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据,可得,根据的单调性,即可求得结果.【详解】因为是锐角三角形的两个内角,故可得,即,又因为,故可得;是偶函数,且在单调递减,故可得在单调递增,故.故选:C.【点睛】本题考查由函数奇偶性判断函数的单调性,涉及余弦函数的单调性,属综合中档题.2、A【解析】根据单调性结合偶函数性质,进行比较大小即可得解.【详解】因为为偶函数,所以又在上为增函数,所以,所以故选:A3、D【解析】由题可知,则∵直线经过点∴直线的方程为,即故选D4、A【解析】根据对任意的,,,有,判断函数的单调性,结合函数的奇偶性和单调性之间的性质,将不等式转化为不等式组,数形结合求解即可详解】因为对任意的,,当,有,所以,当函数为减函数,又因为是偶函数,所以当时,为增函数,,,作出函数的图象如图:等价为或,由图可知,或,即不等式的解集为,故选A【点睛】本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.5、D【解析】根据两圆的圆心距和两半径的和与差的关系判断.【详解】因为圆与圆的圆心距为:两圆的半径之和为:,所以两圆相外切,故选:D6、C【解析】去绝对值符号,写出函数的解析式,再判断函数的周期性【详解】,其中,所以函数的最小正周期,选择C【点睛】本题考查三角函数最小正周期的判断方法,需要对三角函数的解析式整理后,根据函数性质求得7、A【解析】由题意可得:函数y=log12x∴∴∴实数m的取值范围是(0故选A点睛:本小题考查的是学生对函数最值的应用的知识点的掌握.本题在解答时应该先将函数y=log12x在区间(0,8、B【解析】确定生产件产品的生产准备费用与仓储费用之和,可得平均每件的生产准备费用与仓储费用之和,利用基本不等式,即可求得最值【详解】解:根据题意,该生产件产品的生产准备费用与仓储费用之和是这样平均每件的生产准备费用与仓储费用之和为(为正整数)由基本不等式,得当且仅当,即时,取得最小值,时,每件产品的生产准备费用与仓储费用之和最小故选:【点睛】本题考查函数的构建,考查基本不等式的运用,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案,属于基础题9、C【解析】先对两边平方,构造齐次式进而求出或,再用正切的二倍角公式即可求解.【详解】解:对两边平方得,进一步整理可得,解得或,于是故选:C【点睛】本题考查同角三角函数关系和正切的二倍角公式,考查运算能力,是中档题.10、C【解析】取的中点,连接和,由二面角的定义得出,可得出、、的值,由此可计算出和的面积,然后利用三棱锥的体积三棱锥的体积相等,计算出点到平面的距离.【详解】取的中点,连接和,根据二面角的定义,.由题意得,所以,.设到平面的距离为,易知三棱锥的体积三棱锥的体积相等,即,解得,故点C到平面的距离为.故选C.【点睛】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】设所求直线方程为,将点代入上式可得或.考点:直线方程12、【解析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:13、.【解析】因为,所以即的取值范围是.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等14、【解析】先画出函数图像并判断,再根据范围和函数单调性判断时取最大值,最后计算得到答案.【详解】如图所示:根据函数的图象得,所以.结合函数图象,易知当时在上取得最大值,所以又,所以,再结合,可得,所以.故答案为:【点睛】本题考查对数型函数的图像和性质、函数的单调性的应用和最值的求法,是中档题.15、【解析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P-ABC外接球的直径,即可求出三棱锥P-ABC外接球的表面积【详解】∵三棱锥P−ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P−ABC外接球的直径.设长方体的棱长分别为x,y,z,则,∴三棱锥P−ABC外接球的直径为,∴三棱锥P−ABC外接球的表面积为.故答案为:26π.【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.16、(1)(2)的值域为,单调递增区间为;(3)【解析】(1)取特殊点,列表,描点,连线,画出函数图象;(2)化简得到的解析式,进而求出值域,整体法求解单调递增区间;(3)整体法先得到,换元后得到在上有根,进而求出的取值范围.【小问1详解】作出表格如下:x0020-20在平面直角坐标系中标出以下五点,,,,,,用平滑的曲线连接起来,就是函数在区间上的图象,如下图:【小问2详解】,其中,由题意得:,解得:,故,故的值域为,令,解得:,所以的单调递增区间为:【小问3详解】因为,所以,则,令,则,所以方程在上有根等价于在上有根,因为,所以,解得:,故的取值范围是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)由解得P的坐标,再求出直线斜率,即可求直线的方程;(2)若直线与圆:相交由垂径定理列方程求解即可.【详解】(1)由得所以.因为,所以,所以直线的方程为,即.(2)由已知可得:圆心到直线的距离为,因为,所以,所以,所以或.【点睛】直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小18、(1);(2);(3).【解析】(1)利用二倍角的正切公式求解即可;(2)将分子分母同除得到,代值求解即可;(3)先求得,再用两角差的正弦公式求解即可.【详解】(1)(2)(3)19、(1);(2)61.【解析】(1)由已知中12,9,,代入平面向量的夹角公式,即可求出θ的余弦值,结合0°≤θ≤180°,即可得到答案(2)利用数量积运算法则即可得出;【详解】(1)∵12,9,,∴cosθ又∵0°≤θ≤180°则θ=135°(2)∵,,且与夹角为120°,∴6∴42﹣(﹣6)﹣3×32=61【点睛】本题考查了向量的数量积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏南通市崇川区区属国有企业下属控股公司招聘8人考试重点题库及答案解析
- 2025年清华大学关于面向应届毕业生公开招聘工作人员备考题库及1套参考答案详解
- 2025年贵州金农基金管理有限公司公开招聘备考题库及一套答案详解
- 2025年天津市卫生健康委员会所属天津市眼科医院公开招聘备考题库及一套参考答案详解
- 2025济宁市招聘劳务派遣制护理员(2人)备考笔试题库及答案解析
- 2025年杭州市第三人民医院公开招聘编外工作人员5人备考题库及答案详解1套
- 2025济南市市中区残联公开招聘派遣制残疾人工作“一专两员”招聘(2人)笔试重点试题及答案解析
- 2025年锡林郭勒盟油矿医院招聘3人备考题库完整答案详解
- 2025四川攀枝花市东区公益性岗位安置115人备考核心试题附答案解析
- 2025年光泽县县属国有企业专岗招聘退役军人2人笔试重点题库及答案解析
- 国家安全 青春挺膺-新时代青年的使命与担当
- 紫杉醇的课件
- DB50∕T 1633-2024 高标准农田耕地质量调查评价技术规范
- DB32T 5178-2025预拌砂浆技术规程
- 医疗风险防范知识培训课件
- 心力衰竭患者利尿剂抵抗诊断及管理中国专家共识解读
- 餐饮合伙合同范本及注意事项
- 2025湖南环境生物职业技术学院单招《语文》通关考试题库完整附答案详解
- 内镜的护理查房
- 小学科学新青岛版(六三制)一年级上册第三单元《玩中学》教案(共4课)(2024秋)
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读 3
评论
0/150
提交评论