2026届安徽省青阳县一中数学高二上期末联考模拟试题含解析_第1页
2026届安徽省青阳县一中数学高二上期末联考模拟试题含解析_第2页
2026届安徽省青阳县一中数学高二上期末联考模拟试题含解析_第3页
2026届安徽省青阳县一中数学高二上期末联考模拟试题含解析_第4页
2026届安徽省青阳县一中数学高二上期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省青阳县一中数学高二上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.2.若数列满足,则()A. B.C. D.3.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.20224.已知函数,则的单调递增区间为().A. B.C. D.5.若直线的倾斜角为120°,则直线的斜率为()A. B.C. D.6.直线过椭圆内一点,若点为弦的中点,设为直线的斜率,为直线的斜率,则的值为()A. B.C. D.7.在四面体中,为的中点,为棱上的点,且,则()A. B.C. D.8.如图,平行六面体中,为的中点,,,,则()A. B.C. D.9.已知点,动点P满足,则点P的轨迹为()A椭圆 B.双曲线C.抛物线 D.圆10.我们知道∶用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于()A. B.C. D.111.已知,,,,则()A. B.C. D.12.圆心为的圆,在直线x﹣y﹣1=0上截得的弦长为,那么,这个圆的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等比数列中,,,则数列的公比为____.14.已知曲线,则曲线在点处的切线方程为______15.若椭圆:的长轴长为4,焦距为2,则椭圆的标准方程为______.16.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设命题p:实数x满足,其中;命题q:若,且为真,求实数x的取值范围;若是的充分不必要条件,求实数m的取值范围18.(12分)已知函数.(1)判断的单调性.(2)证明:.19.(12分)已知点,直线:,直线m过点N且与垂直,直线m交圆于两点A,B.(1)求直线m的方程;(2)求弦AB的长.20.(12分)求下列函数导数:(1);(2);21.(12分)在直角坐标系中,点到两点、的距离之和等于,设点的轨迹为,直线与交于、两点(1)求曲线的方程;(2)若,求的值22.(10分)在下列所给的三个条件中任选一个,补充在下面问题中,并完成解答(若选择多个条件分别解答,则按第一个解答计分).①与直线平行;②与直线垂直;③直线l的一个方向向量为;已知直线l过点,且___________.(1)求直线l的一般方程;(2)若直线l与圆C:相交于M,N两点,求弦长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C2、C【解析】利用前项积与通项的关系可求得结果.【详解】由已知可得.故选:C.3、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C4、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D5、B【解析】求得倾斜角的正切值即得【详解】k=tan120°=.故选:B6、A【解析】设点与的坐标,进而可表示与,再结合两点在椭圆上,可得的值.【详解】设点与,则,,所以,,又点与在椭圆上,所以,,作差可得,即,所以,故选:A.7、A【解析】利用空间向量加法运算,减法运算,数乘运算即可得到答案.【详解】如图故选:A8、B【解析】先用向量与表示,然后用向量表示向量与,即可得解【详解】解:为的中点,故选:【点睛】本题考查了平面向量基本定理的应用,解决本题的关键是熟练运用向量的加法、减法及实数与向量的积的运算,属于基础题9、A【解析】根据椭圆的定义即可求解.【详解】解:,故,又,根据椭圆的定义可知:P的轨迹为椭圆.故选:A.10、C【解析】由圆锥的底面半径和高及E的位置可得,建立适当的平面直角坐标系,可得C的坐标,设抛物线的方程,将C的坐标代入求出抛物线的方程,进而可得焦点到其准线的距离【详解】设AB,CD的交点为,连接PO,由题意可得PO⊥面AB,所以PO⊥OB,由题意OB=OP=OC=2,因为E是母线PB的中点,所以,由题意建立适当的坐标系,以BP为y轴以OE为x轴,E为坐标原点,如图所示∶可得∶,设抛物线的方程为y2=mx,将C点坐标代入可得,所以,所以抛物线的方程为∶,所以焦点坐标为,准线方程为,所以焦点到其准线的距离为故选:C11、D【解析】根据对数函数的性质和幂函数的单调性可得正确的选项.【详解】因为,故,故,又,在上的增函数,故,故,故选:D.12、A【解析】由垂径定理,根据弦长的一半及圆心到直线的距离求出圆半径,即可写出圆的标准方程.【详解】圆心到直线x﹣y﹣1=0的距离弦长,设圆半径为r,则故r=2则圆的标准方程为故选:A【点睛】本题主要考查直线与圆的位置关系和圆的标准方程,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据等比数列的定义,结合已知条件,代值计算即可求得结果.【详解】因为是等比数列,设其公比为,又,,故可得,解得.故答案为:.14、【解析】利用导数求出切线的斜率即得解.【详解】解:由题得,所以切线的斜率为,所以切线的方程为即.故答案为:15、【解析】由焦距可得c,长轴长得到a,再根据可得答案.【详解】因为椭圆的长轴长为4,则,焦距为2,由,得,则椭圆的标准方程为:.故答案为:.16、18【解析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查【详解】前四场中有一场客场输,第五场赢时,甲队以获胜的概率是前四场中有一场主场输,第五场赢时,甲队以获胜的概率是综上所述,甲队以获胜的概率是【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以获胜的两种情况;易错点之三是是否能够准确计算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;写出命题所对应的集合,命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,则A是B的真子集,列不等式组可求解【详解】解:(1)由,其中;解得,又,即,由得:,又为真,则,得:,故实数x的取值范围为;由得:命题p:,命题q:,由是的充分不必要条件,即p是q的充分不必要条件,A是B的真子集,所以,即故实数m取值范围为:.【点睛】本题考查了二次不等式的解法,复合命题的真假,命题与集合的关系,属于简单题18、(1)在R上单调递增,无单调递减区间;(2)证明见解析.【解析】(1)对求导,令并应用导数求最值,确定的符号,即可知的单调性.(2)利用作差法转化证明的结论,令结合导数研究其单调性,最后讨论的大小关系判断的符号即可证结论.【小问1详解】由题设,.令,则.当时,单调递减;当时,单调递增故,即,则在R上单调递增,无单调递减区间.【小问2详解】.令,则.令,则,显然在R上单调递增,且,∴当时,单调递减;当时,单调递增.故,即,在R上单调递增,又,∴当时,,;当时,,;当时,.综上,,即.【点睛】关键点点睛:第二问,应用作差法有,构造中间函数并应用导数研究单调性,最后讨论的大小证结论.19、(1)(2)【解析】(1)求出斜率,用点斜式求直线方程;(2)利用垂径定理求弦长.【小问1详解】因为直线:,所以直线的斜率为.因为直线m过点N且与垂直,所以直线的斜率为,又过点,所以直线:,即【小问2详解】直线与圆相交,则圆心到直线的距离为:,圆的半径为,所以弦长20、(1);(2)【解析】根据基本初等函数的导数公式以及导数的运算法则计算可得;【详解】解:(1)因为所以,即(2)因为所以,即21、(1);(2).【解析】(1)本题可根据椭圆的定义求出点的轨迹;(2)本题首先可设、,然后联立椭圆与直线方程,通过韦达定理得出、,最后通过得出,代入、的值并计算,即可得出结果.【详解】(1)因为点到两点、的距离之和等于,所以结合椭圆定义易知,点的轨迹是以点、为焦点且的椭圆,则,,,点的轨迹.(2)设,,联立,整理得,则,,因为,所以,即,整理得,则,整理得,解得.【点睛】关键点点睛:本题考查根据椭圆定义求动点轨迹以及直线与抛物线相关问题的求解,椭圆的定义为动点到两个定点的距离为一个固定的常数,考查韦达定理的应用,考查计算能力,是难题.22、(1)若选择①②,则直线方程为:;若选择③,则直线方程为;(2)若选择①②,则;若选择③,则.【解析】(1)根据所选择的条件,结合直线过点,即可写出直线的方程;(2)利用(1)中所求直线方程,以及弦长公式,即可求得结果.【小问1详解】若选①与直线平行,则直线的斜率;又其过点,故直线的方程为,则其一般式为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论