下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
电催化裂解水的催化剂种类及研究进展文献综述1贵金属催化剂根据Sabatier原理ADDINEN.CITE<EndNote><Cite><RecNum>144</RecNum><DisplayText><styleface="superscript">23</style></DisplayText><record><rec-number>144</rec-number><foreign-keys><keyapp="EN"db-id="r5zxvrzvvsdxr4es0zppspfywrfszr0efep9"timestamp="1620583987">144</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors></contributors><titles><title><HydrogenationandDehydrogenationbyCatalysis.pdf></title></titles><dates></dates><urls></urls></record></Cite></EndNote>23,我们知道催化剂和反应中间体之间应该具有适当的相互作用,这个原理同样会适用于HER反应,在理想条件下ΔGH*为零时,HER反应的j0具有最高值,Parsons等人建立了火山类型图,成功将j0值与ΔGH*联系起来。ZhiWeiSeh等人通过DFT理论成功地计算出了各种催化剂的ΔGH*值,得到了不同种催化剂在HER反应上交换电流密度与氢吸附自由能之间的关系ADDINEN.CITE<EndNote><Cite><Author>Seh</Author><Year>2017</Year><RecNum>143</RecNum><DisplayText><styleface="superscript">24</style></DisplayText><record><rec-number>143</rec-number><foreign-keys><keyapp="EN"db-id="r5zxvrzvvsdxr4es0zppspfywrfszr0efep9"timestamp="1620583033">143</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Seh,Z.W.</author><author>Kibsgaard,J.</author><author>Dickens,C.F.</author><author>Chorkendorff,I.</author><author>Norskov,J.K.</author><author>Jaramillo,T.F.</author></authors></contributors><auth-address>SUNCATCenterforInterfaceScienceandCatalysis,DepartmentofChemicalEngineering,StanfordUniversity,Stanford,CA94305,USA. SUNCATCenterforInterfaceScienceandCatalysis,SLACNationalAcceleratorLaboratory,MenloPark,CA94025,USA. InstituteofMaterialsResearchandEngineering,AgencyforScience,TechnologyandResearch(A*STAR),Innovis,138634Singapore. DepartmentofPhysics,TechnicalUniversityofDenmark,DK-2800KongensLyngby,Denmark. SUNCATCenterforInterfaceScienceandCatalysis,DepartmentofChemicalEngineering,StanfordUniversity,Stanford,CA94305,USA.jaramillo@.</auth-address><titles><title>Combiningtheoryandexperimentinelectrocatalysis:Insightsintomaterialsdesign</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><volume>355</volume><number>6321</number><edition>2017/01/14</edition><dates><year>2017</year><pub-dates><date>Jan13</date></pub-dates></dates><isbn>1095-9203(Electronic) 0036-8075(Linking)</isbn><accession-num>28082532</accession-num><urls><related-urls><url>/pubmed/28082532</url></related-urls></urls><electronic-resource-num>10.1126/science.aad4998</electronic-resource-num></record></Cite></EndNote>24。如图1.1的火山曲线所示,铂族金属如Pt、Pd、Ru、Ir和Rh位于火山曲线顶点附近,ΔGH*接近于零,对HER反应展现出了优异的催化性能。Pt位于火山图的顶点,被认为是最有效的HER电催化剂,具有准零起始过电位和较小的Tafel斜率ADDINEN.CITE<EndNote><Cite><Author>Greeley</Author><Year>2006</Year><RecNum>45</RecNum><DisplayText><styleface="superscript">25</style></DisplayText><record><rec-number>45</rec-number><foreign-keys><keyapp="EN"db-id="r5zxvrzvvsdxr4es0zppspfywrfszr0efep9"timestamp="1620032359">45</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Greeley,J.</author><author>Jaramillo,T.F.</author><author>Bonde,J.</author><author>Chorkendorff,I.B.</author><author>Norskov,J.K.</author></authors></contributors><auth-address>CenterforAtomic-scaleMaterialsDesign,NanoDTU,DepartmentofPhysics,TechnicalUniv.ofDenmark,DK-2800KongensLyngby,Denmark.</auth-address><titles><title>Computationalhigh-throughputscreeningofelectrocatalyticmaterialsforhydrogenevolution</title><secondary-title>NatMater</secondary-title></titles><periodical><full-title>NatMater</full-title></periodical><pages>909-13</pages><volume>5</volume><number>11</number><edition>2006/10/17</edition><dates><year>2006</year><pub-dates><date>Nov</date></pub-dates></dates><isbn>1476-1122(Print) 1476-1122(Linking)</isbn><accession-num>17041585</accession-num><urls><related-urls><url>/pubmed/17041585</url></related-urls></urls><electronic-resource-num>10.1038/nmat1752</electronic-resource-num></record></Cite></EndNote>25。虽然pt等贵金属基电催化剂具有优异的催化活性,但其稀缺性和昂贵的价格阻碍了其大规模的实际应用。图1.1(a)在Langmuir吸附模型假设下j0与ΔGH*的关系,(b)在酸性介质中,材料表面上HER的j0对ΔGH*的依赖性ADDINEN.CITE<EndNote><Cite><Author>Seh</Author><Year>2017</Year><RecNum>143</RecNum><DisplayText><styleface="superscript">24</style></DisplayText><record><rec-number>143</rec-number><foreign-keys><keyapp="EN"db-id="r5zxvrzvvsdxr4es0zppspfywrfszr0efep9"timestamp="1620583033">143</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Seh,Z.W.</author><author>Kibsgaard,J.</author><author>Dickens,C.F.</author><author>Chorkendorff,I.</author><author>Norskov,J.K.</author><author>Jaramillo,T.F.</author></authors></contributors><auth-address>SUNCATCenterforInterfaceScienceandCatalysis,DepartmentofChemicalEngineering,StanfordUniversity,Stanford,CA94305,USA. SUNCATCenterforInterfaceScienceandCatalysis,SLACNationalAcceleratorLaboratory,MenloPark,CA94025,USA. InstituteofMaterialsResearchandEngineering,AgencyforScience,TechnologyandResearch(A*STAR),Innovis,138634Singapore. DepartmentofPhysics,TechnicalUniversityofDenmark,DK-2800KongensLyngby,Denmark. SUNCATCenterforInterfaceScienceandCatalysis,DepartmentofChemicalEngineering,StanfordUniversity,Stanford,CA94305,USA.jaramillo@.</auth-address><titles><title>Combiningtheoryandexperimentinelectrocatalysis:Insightsintomaterialsdesign</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><volume>355</volume><number>6321</number><edition>2017/01/14</edition><dates><year>2017</year><pub-dates><date>Jan13</date></pub-dates></dates><isbn>1095-9203(Electronic) 0036-8075(Linking)</isbn><accession-num>28082532</accession-num><urls><related-urls><url>/pubmed/28082532</url></related-urls></urls><electronic-resource-num>10.1126/science.aad4998</electronic-resource-num></record></Cite></EndNote>24。2非贵金属催化剂根据多项理论计算和实验结果,在所有的非贵金属之中,Ni具有最小的氢吸附自由能ΔGH*和最大的HER交换电流密度j0。Miles和Thomason等人利用伏安法研究了不同非贵金属的催化性能,发现Ni>Mo>Co>W>Fe>CuADDINEN.CITE<EndNote><Cite><RecNum>145</RecNum><DisplayText><styleface="superscript">26</style></DisplayText><record><rec-number>145</rec-number><foreign-keys><keyapp="EN"db-id="r5zxvrzvvsdxr4es0zppspfywrfszr0efep9"timestamp="1620619905">145</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors></contributors><titles><title><PeriodicVariationsof__OvervoltagesforWaterElectrolysisinAcidSolutionsfromCyclic__VoltammetricStudies..pdf></title></titles><dates></dates><urls></urls></record></Cite></EndNote>26,这也证明了Ni在所有的非贵金属间具有优秀的电催化电解水性能。3过渡金属催化剂(1)过渡金属氧化物(TMOs)过渡金属氧化物(TMOs)因为廉价、成分稳定、环保等特点被广泛应用于在电催化领域。然而,由于大多数TMOs的导电性比较差、反应速率较慢、H吸附位点数量较少、H束缚能不合适是催化性能较差的主要原因ADDINEN.CITEADDINEN.CITE.DATA27,28。为了TMOs基电催化剂的HER性能,人们提出了减小TMOs结构尺寸、在TMOs上形成多孔结构、将TMOs与导电性良好的碳载体结合,在TMOs引入表面缺陷或氧空位或者掺杂其他原子ADDINEN.CITEADDINEN.CITE.DATA29-34。CuYi等人在镍泡沫(NF)上通过湿化学方法直接生长出超薄多孔MoO2纳米片,,然后进行退火处理,其对HER的活性远远高于传统致密MoO2ADDINEN.CITEADDINEN.CITE.DATA35,这主要是因为超薄多孔MoO2纳米片的表面积较大,活性位点数量更多。(2)过渡金属磷化物(TMPs)过渡金属磷化物(TMPs,TM=Fe,Co,Ni,Mo,W,Cu)近年来作为HER催化剂引起了广泛的关注ADDINEN.CITEADDINEN.CITE.DATA3,36,37。Liu和Rodriguez等人通过DFT计算,预测Ni2P的(001)可能具有非常好的HER催化性能,甚至优于pt基催化剂ADDINEN.CITE<EndNote><Cite><RecNum>158</RecNum><DisplayText><styleface="superscript">38</style></DisplayText><record><rec-number>158</rec-number><foreign-keys><keyapp="EN"db-id="r5zxvrzvvsdxr4es0zppspfywrfszr0efep9"timestamp="1620635219">158</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors></contributors><titles><title><CatalystsforHydrogenEvolutionfromthe[NiFe]HydrogenasetotheNi2P(001)Surface_ TheImportanceofEnsembleEffect.pdf></title></titles><dates></dates><urls></urls></record></Cite></EndNote>38,这主要是因为Ni2P(001)表面暴露的质子受体和氢化物受体中心之间具有协同效应。众所周知的是通过DFT计算,贵金属作为HER催化剂,具有一个以电流密度作为氢吸附自由能的函数的火山图,在火山图峰上的贵金属具有优异的HER催化性能,实验数据也证实了这一点,金属靠近峰值位置越近,HER性能越高。同样,Jaramillo小组也研究了TMPs中类似的火山图ADDINEN.CITE<EndNote><Cite><Author>Kibsgaard</Author><Year>2015</Year><RecNum>161</RecNum><DisplayText><styleface="superscript">39</style></DisplayText><record><rec-number>161</rec-number><foreign-keys><keyapp="EN"db-id="r5zxvrzvvsdxr4es0zppspfywrfszr0efep9"timestamp="1620670191">161</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kibsgaard,Jakob</author><author>Tsai,Charlie</author><author>Chan,Karen</author><author>Benck,JesseD.</author><author>Nørskov,JensK.</author><author>Abild-Pedersen,Frank</author><author>Jaramillo,ThomasF.</author></authors></contributors><titles><title>Designinganimprovedtransitionmetalphosphidecatalystforhydrogenevolutionusingexperimentalandtheoreticaltrends</title><secondary-title>Energy&EnvironmentalScience</secondary-title></titles><periodical><full-title>Energy&EnvironmentalScience</full-title></periodical><pages>3022-3029</pages><volume>8</volume><number>10</number><section>3022</section><dates><year>2015</year></dates><isbn>1754-5692 1754-5706</isbn><urls></urls><electronic-resource-num>10.1039/c5ee02179k</electronic-resource-num></record></Cite></EndNote>39,越靠近火山图峰值上的TMPs基催化剂电催化电解水的性能越高。图1.2(a)不同TMPs基催化剂归一化为电化学活性表面积(ECSA)的Lsv曲线,(b)不同TMPs基催化剂表面上HER的j0对ΔGH*的依赖关系ADDINEN.CITE<EndNote><Cite><Author>Kibsgaard</Author><Year>2015</Year><RecNum>161</RecNum><DisplayText><styleface="superscript">39</style></DisplayText><record><rec-number>161</rec-number><foreign-keys><keyapp="EN"db-id="r5zxvrzvvsdxr4es0zppspfywrfszr0efep9"timestamp="1620670191">161</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Kibsgaard,Jakob</author><author>Tsai,Charlie</author><author>Chan,Karen</author><author>Benck,JesseD.</author><author>Nørskov,JensK.</author><author>Abild-Pedersen,Frank</author><author>Jaramillo,ThomasF.</author></authors></contributors><titles><title>Designinganimprovedtransitionmetalphosphidecatalystforhydrogenevolutionusingexperimentalandtheoreticaltrends</title><secondary-title>Energy&EnvironmentalScience</secondary-title></titles><periodical><full-title>Energy&EnvironmentalScience</full-title></periodical><pages>3022-3029</pages><volume>8</volume><number>10</number><section>3022</section><dates><year>2015</year></dates><isbn>1754-5692 1754-5706</isbn><urls></urls><electronic-resource-num>10.1039/c5ee02179k</electronic-resource-num></record></Cite></EndNote>39。(3)过渡金属硫化物(TMDs)是一种新型催化材料,比贵金属催化剂的价格要便宜,在地球上的丰度也更高,是一种很有前途的催化剂,然而TMDs的催化活性比较差,这主要是因为1、TMDs的边缘活性位点的数量稀缺,对于大多数TMDs材料来说,边缘活性位点唯一具有催化活性的部分,2、大多数TMDs材料的导电性都不好ADDINEN.CITE<EndNote><Cite><Author>Turner</Author><Year>2004</Year><RecNum>48</RecNum><DisplayText><styleface="superscript">20</style></DisplayText><record><rec-number>48</rec-number><foreign-keys><keyapp="EN"db-id="r5zxvrzvvsdxr4es0zppspfywrfszr0efep9"timestamp="1620032442">48</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Turner,J.A.</author></authors></contributors><auth-address>NationalRenewableEnergyLaboratory,Golden,CO80401-3393,USA.jturner@</auth-address><titles><title>Sustainablehydrogenproduction</title><secondary-title>Science</secondary-title></titles><periodical><full-title>Science</full-title></periodical><pages>972-4</pages><volume>305</volume><number>5686</number><edition>2004/08/18</edition><dates><year>2004</year><pub-dates><date>Aug13</date></pub-dates></dates><isbn>1095-9203(Electronic) 0036-8075(Linking)</isbn><accession-num>15310892</accession-num><urls><related-urls><url>/pubmed/15310892</url></related-urls></urls><electronic-resource-num>10.1126/science.1103197</electronic-resource-num></record></Cite></EndNote>20,尤其是多层TMDs材料的层与层之间的电子迁移效率比较差ADDINEN.CITE<EndNote><Cite><Author>Yu</Author><Year>2014</Year><RecNum>164</RecNum><DisplayText><styleface="superscript">40</style></DisplayText><record><rec-number>164</rec-number><foreign-keys><keyapp="EN"db-id="r5zxvrzvvsdxr4es0zppspfywrfszr0efep9"
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年扬州市江都妇幼保健院公开招聘编外合同制专业技术人员备考题库及答案详解1套
- 2025年石狮市琼林中心幼儿园合同教师招聘备考题库及答案详解一套
- 2026年医疗产品国际市场开发合同
- 新时代文明实践所经验交流材料
- 2025年医保年终工作总结例文(4篇)
- 2025年中国航空工业集团凯天岗位招聘备考题库及完整答案详解一套
- 2024年抚州金溪县公安局招聘警务辅助人员考试真题
- java记事本课程设计
- 330mw锅炉课程设计
- 2025福建省国银保安服务有限公司招聘教官2人考试核心试题及答案解析
- 物业服务合同范本(2篇)
- 新质生产力赋能银发经济高质量发展的内在逻辑与实践路径
- 《义务教育语文课程标准》2022年修订版原版
- 浙江省2024年单独考试招生语文试卷真题答案解析(精校打印)
- DLT 2299-2021火力发电厂设备缺陷管理导则
- 中学集体备课实施方案
- JT-T-1199.2-2018绿色交通设施评估技术要求第2部分:绿色服务区
- 刑法学智慧树知到期末考试答案章节答案2024年上海财经大学
- 中建高支模专家论证汇报材料
- 2021年水性丙烯酸防腐涂料,环氧树脂
- 《国际商务导论》课程教学大纲
评论
0/150
提交评论