【《光流控技术简介综述》3000字】_第1页
【《光流控技术简介综述》3000字】_第2页
【《光流控技术简介综述》3000字】_第3页
【《光流控技术简介综述》3000字】_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

光流控技术简介综述光流控技术是一门结合微流控和光学的交叉学科,通过将微流控技术和微光子元件有机结合,使流体与光发生相互作用。自2003年被提出至今,得到了人们的广泛关注ADDINEN.CITEADDINEN.CITE.DATA[\o"Helbo,2003#40"9-15]。光流控技术主要是研究如何在微纳尺度上控制光和流体,并利用光和流体之间的相互作用开发小型化且高度集成的光学器件及仪器。即通过微流通道和表面结构对特定限域尺度范围内的流体进行精确操控,实现光对流体物质性能的控制或者通过流体介质调控光子的产生和传播。基于光流控技术的主要应用包括:光流控光源、可调光学微器件、生化传感器及光操控。光流控光源实现光源的集成化,在生化物分析系统中至关重要ADDINEN.CITEADDINEN.CITE.DATA[\o"Pollnau,2016#52"16-18],因为目前大多数的微全分析系统,光源是独立于微流控芯片之外的,导致微型分析芯片系统的整体结构较复杂,不便携带。为“芯片实验室”提供光子集成光源,能够解决微全分析系统中光源笨重、价格昂贵、高损耗的缺陷,使得微全分析系统的整体结构更轻薄。随着激光技术、精密加工及软光刻等技术的提出和迅速发展,在芯片上集成微流体通道、微型光学谐振腔和增益介质形成光流控光源成为了可能。光流控光源的实现为研究人员提供了将光源集成到微流体系统中的方法,将发光物质或生物活性物质等溶解于液态溶液中,以流体的形式作为光流控光源的增益介质,在激发光的作用下为生化物分析系统提供光学增益。在采用流体形式为系统提供光学增益时,有诸多优势,比如:可通过微流体通道将含增益介质的溶液传送到系统中特定的位置,使生物活性物质能够与光学模式发生高效的相互作用;发光染料存在光学漂白效应,当以流体形式在微流体通道流动时,能够带走系统中所产生的热量,在一定程度上减弱了或避免了光学漂白效应,进而消除了染料漂白所带来的不利影响;最重要的是液态增益介质本身可调,不像固态增益介质那样难以改变,不同的染料溶液有不同的发光波长,更换增益介质溶液,便可实现波长调谐。光流控光源是自2003年光流控技术被首次提出以来研究人员的重要研究方向之一,也是光流控技术的重要应用方向之一。最早的光流控光源是由丹麦理工大学的研究人员在2003年提出的ADDINEN.CITE<EndNote><Cite><Author>Helbo</Author><Year>2003</Year><RecNum>40</RecNum><DisplayText><styleface="superscript">[9]</style></DisplayText><record><rec-number>40</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611647501">40</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Helbo,B.</author><author>Kristensen,A.</author><author>Menon,A.</author></authors></contributors><titles><title>Amicro-cavityfluidicdyelaser</title><secondary-title>JournalofMicromechanicsandMicroengineering</secondary-title></titles><periodical><full-title>JournalofMicromechanicsandMicroengineering</full-title></periodical><pages>307-311</pages><volume>13</volume><number>2</number><dates><year>2003</year><pub-dates><date>2003/01/28</date></pub-dates></dates><publisher>IOPPublishing</publisher><isbn>0960-1317</isbn><urls><related-urls><url>/10.1088/0960-1317/13/2/320</url></related-urls></urls><electronic-resource-num>10.1088/0960-1317/13/2/320</electronic-resource-num></record></Cite></EndNote>[\o"Helbo,2003#40"9],采用溶解于无水乙醇中的罗丹明6G溶液作为增益介质注入到微流体通道中,由一对上下放置的金属反射镜构成法布里-珀罗谐振腔增强光与物质之间的相互作用,在波长为532nm泵浦光的作用下,实现了570nm波长处的激光发射。在此之后,光流控光源在功能性、低阈值性、方向性、紧凑性及可制造性等方面都有了不断的发展,被应用于有源生化传感中,促进了生物化学传感的进步。将在1.1.2和1.1.3小节中对光流控光源的研究现状及其应用进行更加详细的介绍。可调光学微器件流体不仅具有流动性,还具有固体难以实现的可调光学性质,比如:通过液体的混合可以实现介质折射率的调节;在两个不相溶液体的交界处可以形成光滑的光学界面;还可以通过混合两种相溶的液体形成折射率梯度。这些特性为研究可调光流控光学微器件提供了可能。科研人员利用液体易流动的特点设计了光流控可变焦透镜,通过光流控技术实现了光学成像设备的微小型化。光流控变焦液体透镜一般由微透镜液体腔和微流体注入通道共同组成,通过微细加工技术制作由有机聚合物构成的弹性腔体,透明液体由微流体通道注入到腔体时,腔体因受到液体压力而发生形变,进而改变微透镜的曲率半径达到改变光学微透镜焦距的目的ADDINEN.CITEADDINEN.CITE.DATA[\o"Lee,2013#60"19-22]。除可变焦透镜外,科研人员还研究了多种多样的可调控光流控光波导器件,主要有基于液-液界面的全流体光波导器件和基于固-液界面的微流体光波导器件两类。在实现基于液-液界面的全流体光波导器件时,采用两种不同折射率的液体并使其分别通入微流体管道中,因液体具有层流特性,通入的两种液体可分别作为波导的芯层和包层,通控液体的流动速度或改变液体的折射率,可实现对波导内传输光的调控。基于液-液界面的可调控光波导器件的种类繁多,较为典型的光波导器件有光开关ADDINEN.CITEADDINEN.CITE.DATA[\o"Campbell,2004#62"23-26]、光功率分束器ADDINEN.CITEADDINEN.CITE.DATA[\o"Wolfe,2005#69"27-30]等。在实现基于固-液界面的微流体光波导器件时,通常采用有机聚合物材料设计及制作微流体通道,将所调控的流体注入,使其在微流体通道内流动,和有机聚合物通道作为光波导器件的芯层或包层,改变液体的折射率,可实现对波导内光子产生或光学模式的调控。基于固-液界面的微流控光波导器件主要包括光探测器ADDINEN.CITEADDINEN.CITE.DATA[\o"Wu,2008#72"31,\o"Ramezannezhad,2020#73"32]、可调光衰减器ADDINEN.CITEADDINEN.CITE.DATA[\o"Zhu,2005#74"33-36]、可调滤波器ADDINEN.CITEADDINEN.CITE.DATA[\o"Fang,2017#77"37-39]、可调偏振分束器ADDINEN.CITE<EndNote><Cite><Author>Zhu</Author><Year>2016</Year><RecNum>81</RecNum><DisplayText><styleface="superscript">[40]</style></DisplayText><record><rec-number>81</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611835867">81</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhu,Song</author><author>Liu,Yang</author><author>Shi,Lei</author><author>Xu,Xinbiao</author><author>Yuan,Shixing</author><author>Liu,Ningyu</author><author>Zhang,Xinliang</author></authors></contributors><titles><title>Tunablepolarizationbeamsplitterbasedonoptofluidicringresonator</title><secondary-title>OpticsExpress</secondary-title></titles><periodical><full-title>OpticsExpress</full-title></periodical><pages>17511-17521</pages><volume>24</volume><number>15</number><dates><year>2016</year></dates><urls></urls></record></Cite></EndNote>[\o"Zhu,2016#81"40]等。典型的可调光学微器件如图1.2所示。图1.2典型的可调光学微器件。(a)可调焦透镜ADDINEN.CITE<EndNote><Cite><Author>Mao</Author><Year>2009</Year><RecNum>85</RecNum><DisplayText><styleface="superscript">[22]</style></DisplayText><record><rec-number>85</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611840038">85</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Mao,Xiaole</author><author>Lin,Sz-ChinSteven</author><author>Lapsley,MichaelIan</author><author>Shi,Jinjie</author><author>Juluri,BalaKrishna</author><author>Huang,TonyJun</author></authors></contributors><titles><title>TunableLiquidGradientRefractiveIndex(L-GRIN)lenswithtwodegreesoffreedom</title><secondary-title>LabonaChip</secondary-title></titles><periodical><full-title>LabonaChip</full-title></periodical><pages>2050-2058</pages><volume>9</volume><number>14</number><dates><year>2009</year></dates><publisher>TheRoyalSocietyofChemistry</publisher><isbn>1473-0197</isbn><work-type>10.1039/B822982A</work-type><urls><related-urls><url>/10.1039/B822982A</url></related-urls></urls><electronic-resource-num>10.1039/B822982A</electronic-resource-num></record></Cite></EndNote>[\o"Mao,2009#85"22];(b)2×2光开关ADDINEN.CITE<EndNote><Cite><Author>Xu</Author><Year>2019</Year><RecNum>61</RecNum><DisplayText><styleface="superscript">[25]</style></DisplayText><record><rec-number>61</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611823416">61</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Xu,Peng</author><author>Wan,Jing</author><author>Zhang,Simo</author><author>Duan,Yixin</author><author>Chen,Boyu</author><author>Zhang,Sheng</author></authors></contributors><titles><title>2 × 2optofluidicswitchchipwithanairshutter</title><secondary-title>AppliedOptics</secondary-title><alt-title>Appl.Opt.</alt-title></titles><periodical><full-title>AppliedOptics</full-title><abbr-1>Appl.Opt.</abbr-1></periodical><alt-periodical><full-title>AppliedOptics</full-title><abbr-1>Appl.Opt.</abbr-1></alt-periodical><pages>4637-4641</pages><volume>58</volume><number>17</number><keywords><keyword>Extinctionratios</keyword><keyword>Finiteelementmethod</keyword><keyword>Opticalsensing</keyword><keyword>Opticalsignals</keyword><keyword>Opticalswitchingdevices</keyword><keyword>Photoniccrystals</keyword></keywords><dates><year>2019</year><pub-dates><date>2019/06/10</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=ao-58-17-4637</url></related-urls></urls><electronic-resource-num>10.1364/AO.58.004637</electronic-resource-num></record></Cite></EndNote>[\o"Xu,2019#61"25];(c)光功率分束器ADDINEN.CITE<EndNote><Cite><Author>Tang</Author><Year>2016</Year><RecNum>70</RecNum><DisplayText><styleface="superscript">[29]</style></DisplayText><record><rec-number>70</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611832972">70</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Tang,Xionggui</author><author>Liang,Shan</author><author>Li,Rujian</author></authors></contributors><titles><title>Designforcontrollableoptofluidicbeamsplitter</title><secondary-title>PhotonicsandNanostructures-FundamentalsandApplications</secondary-title></titles><periodical><full-title>PhotonicsandNanostructures-FundamentalsandApplications</full-title></periodical><pages>23-30</pages><volume>18</volume><keywords><keyword>Optofluidicbeamsplitter</keyword><keyword>Tunability</keyword><keyword>Microfluidicchannel</keyword><keyword>Y-branchwaveguidestructure</keyword></keywords><dates><year>2016</year><pub-dates><date>2016/01/01/</date></pub-dates></dates><isbn>1569-4410</isbn><urls><related-urls><url>/science/article/pii/S1569441015000796</url></related-urls></urls><electronic-resource-num>/10.1016/j.photonics.2015.12.002</electronic-resource-num></record></Cite></EndNote>[\o"Tang,2016#70"29];(d)可调滤波器ADDINEN.CITE<EndNote><Cite><Author>Yu</Author><Year>2012</Year><RecNum>84</RecNum><DisplayText><styleface="superscript">[39]</style></DisplayText><record><rec-number>84</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611836755">84</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yu,Zhe</author><author>Liang,Ruisheng</author><author>Chen,Pixin</author><author>Huang,Qiaodong</author><author>Huang,Tingting</author><author>Xu,Xingkai</author></authors></contributors><titles><title>IntegratedTunableOptofluidicsOpticalFilterBasedonMIMSide-Coupled-CavityWaveguide</title><secondary-title>Plasmonics</secondary-title></titles><periodical><full-title>Plasmonics</full-title></periodical><pages>603-607</pages><volume>7</volume><number>4</number><dates><year>2012</year><pub-dates><date>2012/12/01</date></pub-dates></dates><isbn>1557-1963</isbn><urls><related-urls><url>/10.1007/s11468-012-9348-2</url></related-urls></urls><electronic-resource-num>10.1007/s11468-012-9348-2</electronic-resource-num></record></Cite></EndNote>[\o"Yu,2012#84"39];(e)可调光衰减器ADDINEN.CITE<EndNote><Cite><Author>Wan</Author><Year>2018</Year><RecNum>78</RecNum><DisplayText><styleface="superscript">[34]</style></DisplayText><record><rec-number>78</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611835370">78</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wan,Jing</author><author>Xue,Fenglan</author><author>Liu,Chengjie</author><author>Huang,Shaoqiang</author><author>Fan,Shuzheng</author><author>Hu,Fangren</author></authors></contributors><titles><title>Optofluidicvariableopticalattenuatorcontrolledbyelectricity</title><secondary-title>AppliedOptics</secondary-title><alt-title>Appl.Opt.</alt-title></titles><periodical><full-title>AppliedOptics</full-title><abbr-1>Appl.Opt.</abbr-1></periodical><alt-periodical><full-title>AppliedOptics</full-title><abbr-1>Appl.Opt.</abbr-1></alt-periodical><pages>8114-8118</pages><volume>57</volume><number>28</number><keywords><keyword>Attenuation</keyword><keyword>Densewavelengthdivisionmultiplexing</keyword><keyword>Infraredradiation</keyword><keyword>Opticalsensing</keyword><keyword>Variableopticalattenuators</keyword><keyword>Visiblelight</keyword></keywords><dates><year>2018</year><pub-dates><date>2018/10/01</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=ao-57-28-8114</url></related-urls></urls><electronic-resource-num>10.1364/AO.57.008114</electronic-resource-num></record></Cite></EndNote>[\o"Wan,2018#78"34];(f)偏振分束器ADDINEN.CITE<EndNote><Cite><Author>Zhu</Author><Year>2016</Year><RecNum>81</RecNum><DisplayText><styleface="superscript">[40]</style></DisplayText><record><rec-number>81</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611835867">81</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhu,Song</author><author>Liu,Yang</author><author>Shi,Lei</author><author>Xu,Xinbiao</author><author>Yuan,Shixing</author><author>Liu,Ningyu</author><author>Zhang,Xinliang</author></authors></contributors><titles><title>Tunablepolarizationbeamsplitterbasedonoptofluidicringresonator</title><secondary-title>OpticsExpress</secondary-title></titles><periodical><full-title>OpticsExpress</full-title></periodical><pages>17511-17521</pages><volume>24</volume><number>15</number><dates><year>2016</year></dates><urls></urls></record></Cite></EndNote>[\o"Zhu,2016#81"40]光流控生化传感器光流控技术将微流控技术和光学器件有机结合,两者互相作用、相互影响,促成了光流控学在传感领域的应用。作为光流控系统中的重要载体,流体可以携带、运输各种体积在微纳尺度量级的物质,使其通过光流控系统,待光同流体及流体中所携带的物质相互作用后,会产生特定的光学信号响应,进而实现快速高效的生化物的检测和分析。光流控系统可以将微流体通道及光学器件集成,从而实现生化物检测系统的微小型化。在光流控系统中,液体折射率的变化对光的激发和传播会产生较大的影响,基于这一特性,可以将光流控系统应用于生化物质的探测。基于光流控技术,通过设计不同的光学结构,能够制造出各种性能优异的光流控生化物传感器。按照光学结构进行分类,可分为:(1)基于光子晶体谐振腔或光子晶体光纤的光流控生化物传感器ADDINEN.CITEADDINEN.CITE.DATA[\o"Lee,2007#86"41-45],该传感器的实验原理是当一束光在光子晶体结构中传播时,会在晶体结构中发生复杂的光折射和光反射产生的折射光和反射光,折射光和反射光经过干涉后,只有特定波长的光才能通过该光子晶体结构,从而形成了光子带隙,当光子晶体谐振腔腔内折射率发生微小变化便可使光子晶体谐振腔的光子带隙发生偏移,即光响应信号产生了改变,也就起到了传感作用;(2)基于回音壁模式的光流控生化物传感器ADDINEN.CITEADDINEN.CITE.DATA[\o"Li,2013#92"46-50],当微环、微管、微球型光学结构放置于折射率较低的环境中时,在这些微腔内,大于临界角的光在微腔表面发生全反射,使光被束缚在微腔表面,不断沿着微腔表面传播,当满足干涉条件时,相互叠加增强,形成回音壁模式,改变外界环境会使微腔折射率发生变化,进而导致微腔的模式发生变化,实现光流控传感;(3)基于液芯光波导模式或微纳光纤的光流控生化物传感器ADDINEN.CITEADDINEN.CITE.DATA[\o"Ozcelik,2015#97"51-56],利用光在波导中全反射产生的倏逝场与流体发生相互作用,当流体变化时,光信号会产生变化,进而实现生化物的检测和分析;(4)基于表面等离子体共振的光流控生化物传感器ADDINEN.CITEADDINEN.CITE.DATA[\o"Chen,2019#88"57-61],利用表面等离子共振对金属表面区域液体折射率的敏感性实现传感功能,改变流体,其折射率的变化会引起共振峰的偏移,偏移量和折射率的对应关系,便是生化物传感灵敏度。典型的光流控生化物传感器如图1.3所示。图1.3典型的光流控生化物传感器。(a)光子晶体微腔光流控生化物传感器ADDINEN.CITE<EndNote><Cite><Author>Lee</Author><Year>2007</Year><RecNum>86</RecNum><DisplayText><styleface="superscript">[41]</style></DisplayText><record><rec-number>86</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611899329">86</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Lee,Mindy</author><author>Fauchet,PhilippeM.</author></authors></contributors><titles><title>Two-dimensionalsiliconphotoniccrystalbasedbiosensingplatformforproteindetection</title><secondary-title>OpticsExpress</secondary-title><alt-title>Opt.Express</alt-title></titles><periodical><full-title>OpticsExpress</full-title></periodical><pages>4530-4535</pages><volume>15</volume><number>8</number><keywords><keyword>Opticaldiagnosticsformedicine</keyword><keyword>Resonators</keyword><keyword>Electronbeamlithography</keyword><keyword>FastFouriertransforms</keyword><keyword>Photoniccrystalcavities</keyword><keyword>Photoniccrystals</keyword><keyword>Refractiveindex</keyword><keyword>Scanningelectronmicroscopy</keyword></keywords><dates><year>2007</year><pub-dates><date>2007/04/16</date></pub-dates></dates><publisher>OSA</publisher><urls><related-urls><url>/abstract.cfm?URI=oe-15-8-4530</url></related-urls></urls><electronic-resource-num>10.1364/OE.15.004530</electronic-resource-num></record></Cite></EndNote>[\o"Lee,2007#86"41];(b)回音壁模式光流控生化物传感器ADDINEN.CITE<EndNote><Cite><Author>Li</Author><Year>2013</Year><RecNum>92</RecNum><DisplayText><styleface="superscript">[46]</style></DisplayText><record><rec-number>92</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611900706">92</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Li,Ming</author><author>Wu,Xiang</author><author>Liu,Liying</author><author>Fan,Xudong</author><author>Xu,Lei</author></authors></contributors><titles><title>Self-ReferencingOptofluidicRingResonatorSensorforHighlySensitiveBiomolecularDetection</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalyticalChemistry</full-title></periodical><pages>9328-9332</pages><volume>85</volume><number>19</number><dates><year>2013</year><pub-dates><date>2013/10/01</date></pub-dates></dates><publisher>AmericanChemicalSociety</publisher><isbn>0003-2700</isbn><urls><related-urls><url>/10.1021/ac402174x</url></related-urls></urls><electronic-resource-num>10.1021/ac402174x</electronic-resource-num></record></Cite></EndNote>[\o"Li,2013#92"46];(c)液芯光波导光流控生化物传感器ADDINEN.CITE<EndNote><Cite><Author>Lapsley</Author><Year>2011</Year><RecNum>98</RecNum><DisplayText><styleface="superscript">[52]</style></DisplayText><record><rec-number>98</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611902826">98</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Lapsley,MichaelIan</author><author>Chiang,I.Kao</author><author>Zheng,YueBing</author><author>Ding,Xiaoyun</author><author>Mao,Xiaole</author><author>Huang,TonyJun</author></authors></contributors><titles><title>Asingle-layer,planar,optofluidicMach–Zehnderinterferometerforlabel-freedetection</title><secondary-title>LabonaChip</secondary-title></titles><periodical><full-title>LabonaChip</full-title></periodical><pages>1795-1800</pages><volume>11</volume><number>10</number><dates><year>2011</year></dates><publisher>TheRoyalSocietyofChemistry</publisher><isbn>1473-0197</isbn><work-type>10.1039/C0LC00707B</work-type><urls><related-urls><url>/10.1039/C0LC00707B</url></related-urls></urls><electronic-resource-num>10.1039/C0LC00707B</electronic-resource-num></record></Cite></EndNote>[\o"Lapsley,2011#98"52];(d)表面等离子体共振光流控生化物传感器ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2019</Year><RecNum>88</RecNum><DisplayText><styleface="superscript">[57]</style></DisplayText><record><rec-number>88</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611899813">88</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,Yung-Tsan</author><author>Liao,Yu-Yang</author><author>Chen,Chien-Chun</author><author>Hsiao,Hui-Hsin</author><author>Huang,Jian-Jang</author></authors></contributors><titles><title>Surfaceplasmonscoupledtwo-dimensionalphotoniccrystalbiosensorsforEpstein-Barrvirusproteindetection</title><secondary-title>SensorsandActuatorsB:Chemical</secondary-title></titles><periodical><full-title>SensorsandActuatorsB:Chemical</full-title></periodical><pages>81-88</pages><volume>291</volume><keywords><keyword>Photoniccrystalbiosensor</keyword><keyword>Diffraction</keyword><keyword>Proteindetection</keyword><keyword>Surfaceplasmonpolariton</keyword></keywords><dates><year>2019</year><pub-dates><date>2019/07/15/</date></pub-dates></dates><isbn>0925-4005</isbn><urls><related-urls><url>/science/article/pii/S0925400519305829</url></related-urls></urls><electronic-resource-num>/10.1016/j.snb.2019.04.059</electronic-resource-num></record></Cite></EndNote>[\o"Chen,2019#88"57]光操控微流控技术和光学元件相结合的光流控技术,除通过流体对光进行控制实现上述光流控器件外,还可以通过光或光学系统对流体的特性和运动进行控制实现如粒子分离ADDINEN.CITEADDINEN.CITE.DATA[\o"Wu,2016#109"62-64]等应用。比如,西安交通大学的科研人员通过研究光学系统对流体的操控,在光流体晶格中将传统测量方法提高到了单细胞尺度层面,实现了对颗粒捕获、分离及跳跃等现象的精准操控,这对那些极小样品用量的疾病的检测和诊断及单细胞精密医学应用等具有深远的影响ADDINEN.CITE<EndNote><Cite><Author>Shi</Author><Year>2018</Year><RecNum>114</RecNum><DisplayText><styleface="superscript">[65]</style></DisplayText><record><rec-number>114</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611918750">114</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Shi,Y.Z.</author><author>Xiong,S.</author><author>Zhang,Y.</author><author>Chin,L.K.</author><author>Chen,Y.Y.</author><author>Zhang,J.B.</author><author>Zhang,T.H.</author><author>Ser,W.</author><author>Larson,A.</author><author>Hoi,L.S.</author><author>Wu,J.H.</author><author>Chen,T.N.</author><author>Yang,Z.C.</author><author>Hao,Y.L.</author><author>Liedberg,B.</author><author>Yap,P.H.</author><author>Tsai,D.P.</author><author>Qiu,C.W.</author><author>Liu,A.Q.</author></authors></contributors><titles><title>Sculptingnanoparticledynamicsforsingle-bacteria-levelscreeninganddirectbinding-efficiencymeasurement</title><secondary-title>NatureCommunications</secondary-title></titles><periodical><full-title>NatureCommunications</full-title></periodical><volume>9</volume><dates><year>2018</year><pub-dates><date>Feb26</date></pub-dates></dates><isbn>2041-1723</isbn><accession-num>WOS:000426048900002</accession-num><urls><related-urls><url><GotoISI>://WOS:000426048900002</url></related-urls></urls><custom7>815</custom7><electronic-resource-num>10.1038/s41467-018-03156-5</electronic-resource-num></record></Cite></EndNote>[\o"Shi,2018#114"65]。典型的光学操控应用如图1.4所示。图1.4典型的光学操控应用。(a)纳米粒子的分选ADDINEN.CITE<EndNote><Cite><Author>Wu</Author><Year>2016</Year><RecNum>109</RecNum><DisplayText><styleface="superscript">[62]</style></DisplayText><record><rec-number>109</rec-number><foreign-keys><keyapp="EN"db-id="fsp2sprfses59ge9tf3xezao9xp909p92tdw"timestamp="1611912091">109</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wu,Wei</author><author>Zhu,Xiaoqiang</author><author>Zuo,Yunfeng</author><auth

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论