上海市杨浦区交大附中2026届高二数学第一学期期末调研试题含解析_第1页
上海市杨浦区交大附中2026届高二数学第一学期期末调研试题含解析_第2页
上海市杨浦区交大附中2026届高二数学第一学期期末调研试题含解析_第3页
上海市杨浦区交大附中2026届高二数学第一学期期末调研试题含解析_第4页
上海市杨浦区交大附中2026届高二数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市杨浦区交大附中2026届高二数学第一学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.2.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.3.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,n的最大值是()A.8 B.9C.10 D.114.函数为的导函数,令,则下列关系正确的是()A. B.C. D.5.若动点在方程所表示的曲线上,则以下结论正确的是()①曲线关于原点成中心对称图形;②动点到坐标原点的距离的取值范围为;③动点与点的最小距离为;④动点与点的连线斜率的取值范围是.A.①② B.①②③C.③④ D.①②④6.设是等比数列,则“对于任意的正整数n,都有”是“是严格递增数列”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.函数的递增区间是()A. B.和C. D.和8.顶点在原点,关于轴对称,并且经过点的抛物线方程为()A. B.C. D.9.已知函数,则的单调递增区间为().A. B.C. D.10.关于的不等式的解集为()A. B.C.或 D.11.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.5612.已知矩形,,,沿对角线将折起,若二面角的余弦值为,则与之间距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,命题p:,;命题q:,,且为真命题,则a的取值范围为______14.如图,在边长为2的正方形ABCD中,点E,F分别是AB,BC的中A点,将,,,分别沿DE,EF,DF折起,使得A,B,C三点重合于点P,则四面体的外接球表面积为____________.15.以下四个关于圆锥曲线的命题中:①设A、B为两个定点,k为非零常数,若,则动点P的轨迹为双曲线;②抛物线焦点坐标是;③过定圆C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P的轨迹为椭圆;④曲线与曲线(且)有相同的焦点其中真命题的序号为______(写出所有真命题的序号.)16.若,满足约束条件,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体)(1)求两颗骰子向上的点数相等的概率;(2)求两颗骰子向上的点数不相等,且一个点数是另一个点数的整数倍的概率18.(12分)求下列函数的导数:(1);(2).19.(12分)已知抛物线的焦点是椭圆的一个焦点,直线交抛物线E于两点(1)求E的方程;(2)若以BC为直径的圆过原点O,求直线l的方程20.(12分)已知数列{an}是一个等差数列,且a2=1,a5=-5.(1)求{an}的通项an;(2)求{an}前n项和Sn的最大值21.(12分)已知直线与双曲线交于,两点,为坐标原点(1)当时,求线段的长;(2)若以为直径的圆经过坐标原点,求的值22.(10分)如图,已知在四棱锥中,平面,四边形为直角梯形,,,.(1)求直线与平面所成角的正弦值;(2)在线段上是否存在点,使得二面角的余弦值?若存在,指出点的位置;若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.2、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.3、B【解析】先求出数列和的通项公式,然后利用分组求和求出,再对进行赋值即可求解.【详解】解:因为数列是以1为首项,2为公差的等差数列所以因为是以1为首项,2为公比的等比数列所以由得:当时,即当时,当时,所以n的最大值是.故选:B.【点睛】关键点睛:本题的关键是利用分组求和求出,再通过赋值法即可求出使不等式成立的的最大值.4、B【解析】求导后,令,可求得,再利用导数可得为减函数,比较的大小后,根据为减函数可得答案.【详解】由题意得,,,解得,所以所以,所以为减函数因为,所以,故选:B【点睛】关键点点睛:比较大小的关键是知道的单调性,利用导数可得的单调性.5、A【解析】将原方程等价变形为,将方程中的换为,换为,方程不变,可判断①;利用两点间的距离公式,结合二次函数知识可判断②和③;取特殊点可判断④.【详解】因为等价于,即,对于①,将方程中的换为,换为,方程不变,所以曲线关于原点成中心对称图形,故①正确;对于②,设,则动点到坐标原点的距离,因为,所以,故②正确;对于③,设,动点与点的距离为,因为函数在上递减,所以当时,函数取得最小值,从而取得最小值,故③不正确;对于④,当时,因为,所以,故④不正确.综上所述:结论正确的是:①②.故选:A6、C【解析】根据严格递增数列定义可判断必要性,分类讨论可判断充分性.【详解】若是严格递增数列,显然,所以“对于任意的正整数n,都有”是“是严格递增数列”必要条件;对任意的正整数n都成立,所以中不可能同时含正项和负项,,即,或,即,当时,有,即,是严格递增数列,当时,有,即,是严格递增数列,所以“对于任意的正整数n,都有”是“是严格递增数列”充分条件故选:C7、C【解析】求导后,由可解得结果.【详解】因为的定义域为,,由,得,解得,所以的递增区间为.故选:C.【点睛】本题考查了利用导数求函数的增区间,属于基础题.8、C【解析】根据题意,设抛物线的方程为,进而待定系数求解即可.【详解】解:由题,设抛物线的方程为,因为在抛物线上,所以,解得,即所求抛物线方程为故选:C9、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D10、C【解析】求出不等式对应方程的根,结合不等式和二次函数的关系,即可得到结果.【详解】不等式对应方程的两根为,因为,故可得,根据二次不等式以及二次函数的关系可得不等式的解集为或.故选:C.【点睛】本题考查含参二次不等式的求解,属基础题.11、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B12、C【解析】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,分析可知二面角的平面角为,利用余弦定理求出,证明出,再利用勾股定理可求得的长.【详解】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,因为,,,则,因为,由等面积法可得,同理可得,由勾股定理可得,同理可得,,因为四边形为平行四边形,且,故四边形为矩形,所以,,因为,所以,二面角的平面角为,在中,,,由余弦定理可得,,,,则,,因为,平面,平面,则,,由勾股定理可得.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出命题p,q为真命题时的a的取值范围,根据为真可知p,q都是真命题,即可求得答案.【详解】命题p:,为真时,有,命题q:,为真时,则有,即,故为真命题时,且,即,故a的取值范围为,故答案为:14、【解析】由题意在四面体中两两垂直,将该四面体补成长方体,则长方体与四面体的外接球相同,从而可求解.【详解】将直角,,,分别沿DE,EF,DF折起,使得A,B,C三点重合于点P,所以在四面体中两两垂直,将该四面体补成长方体,如图.则长方体与四面体的外接球相同.长方体的外接球在其对角线的中点处.由题意可得,则长方体的外接球的半径为所以四面体的外接球表面积为故答案为:15、②④##④②【解析】利用双曲线定义判断命题①;写出抛物线焦点判断命题②;分析点P满足的关系判断命题③;按取值讨论计算半焦距判断命题④作答.【详解】对于①,因双曲线定义中要求,则命题①不正确;对于②,抛物线化为:,其焦点坐标是,命题②正确;对于③,令定圆C的圆心为C,因,则点P是弦AB的中点,当P与C不重合时,有,点P在以线段AC为直径的圆上,当P与C重合时,点P也在以线段AC为直径的圆上,因此,动点P的轨迹是以线段AC为直径的圆(除A点外),则命题③不正确;对于④,曲线的焦点为,当时,椭圆中半焦距c满足:,其焦点为,当时,双曲线中半焦距满足:,其焦点为,因此曲线与曲线(且)有相同的焦点,命题④正确,所以真命题的序号为②④.故答案为:②④【点睛】易错点睛:椭圆长短半轴长分别为a,b,半焦距为c满足关系式:;双曲线的实半轴长、虚半轴长、半焦距分别为、、满足关系式:,在同一问题中出现认真区分,不要混淆.16、0【解析】作出约束条件对应的可行域,当目标函数过点时,取得最小值,求解即可.【详解】作出约束条件对应的可行域,如下图阴影部分,联立,可得交点为,目标函数可化为,当目标函数过点时,取得最小值,即.故答案为:0.【点睛】本题考查线性规划,考查数形结合的数学思想的应用,考查学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出同时掷两颗骰子的基本事件数、及骰子向上的点数相等的基本事件数,应用古典概型的概率求法,求概率即可.(2)列举出两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数的基本事件,应用古典概型的概率求法,求概率即可.【小问1详解】同时掷两颗骰子包括的基本事件共种,掷两颗骰子向上的点数相等包括的基本事件为6种,故所求的概率为;【小问2详解】两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数时,用坐标记为,,,,,,,,,,,,,,,,共包括16个基本事件,故两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数有的概率为.18、(1);(2).【解析】(1)根据导数的加法运算法则,结合常见函数的导数进行求解即可;(2)根据导数的加法和乘法的运算法则,结合常见函数的导数进行求解即可.【小问1详解】;【小问2详解】.19、(1);(2).【解析】(1)利用椭圆的焦点与抛物线的焦点相同,列出方程求解即可(2)设,、,,联立直线与抛物线方程,利用韦达定理,通过,求出,得到直线方程【小问1详解】由题意知:,,∴的方程是【小问2详解】设,、,,由题意知,由,得,∴,,,∵以为直径的圆过点,∴,即,∴,解得,∴直线的方程是20、(1)an=-2n+5.(2)4【解析】(Ⅰ)设{an}的公差为d,由已知条件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2时,Sn取到最大值421、(1)(2)【解析】(1)联立直线方程和双曲线方程,利用弦长公式可求弦长.(2)根据圆过原点可得,设,从而,联立直线方程和双曲线方程后利用韦达定理化简前者可得所求的参数的值.【小问1详解】当时,直线,设,由可得,此时,故.【小问2详解】设,因为以为直径的圆经过坐标原点,故,故,由可得,故且,故.而可化为即,因为,所以,解得,结合其范围可得.22、(1);(2)存在,为上靠近点的三等分点【解析】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,求出的坐标以及平面的一个法向量,计算即可求解;(2)假设线段上存在点符合题意,设可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【详解】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,如图所示:则,,,.不妨设平面的一个法向量,则有,即,取.设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论