2024年中考数学(黑龙江哈尔滨)第二次模拟考试(含答案)_第1页
2024年中考数学(黑龙江哈尔滨)第二次模拟考试(含答案)_第2页
2024年中考数学(黑龙江哈尔滨)第二次模拟考试(含答案)_第3页
2024年中考数学(黑龙江哈尔滨)第二次模拟考试(含答案)_第4页
2024年中考数学(黑龙江哈尔滨)第二次模拟考试(含答案)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年中考第二次模拟考试(黑龙江哈尔滨卷)数学(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。4.考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列实数中,最大的是(

)A. B. C.0 D.2.下列运算结果正确的是(

)A. B.C. D.3.下列图形既是轴对称图形,又是正方体的平面展开图的是(

)A.

B.

C.

D.

4.2023年长沙国际马拉松在芙蓉中路(贺龙体育中心东广场旁)起跑,来自国内外的26000名跑友汇成一片红色的海洋驰聘在长马赛道上,他们用脚步丈量星城,感受一江两岸、山水洲城的魅力,图①是此次全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台从正面看到的平面图形是(

)A. B. C. D.5.如图,反比例函数(,且k为常数)的图象与直线(,且a为常数)交于、B两点,则点B的坐标为()A. B. C. D.6.关于x的方程:的解是负数,则a的取值范围是()A. B.且 C. D.且7.电影《长津湖》上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达18亿元,将增长率记作x,则方程可以列为(

)A. B.C. D.8.如图,菱形的对角线交于点,于点,若,,则的长为(

)A.12 B.10 C. D.9.如图,是的直径,切于点A,切于点B,且,,则点O到弦的距离为(

)A.2 B. C. D.10.如图1,矩形中,点为的中点,动点从点出发,沿折线匀速运动,到达点时停止运动,连接、,设为,为,且关于的函数图象如图2所示,则的最大值为(

)A. B. C. D.第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)11.中国空间站未来将单独发射一个光学舱,内设巡天望远镜,其分辨率与哈勃相当,视场角是哈勃的300多倍.在轨10年,可以对以上的天区,约17500平方度天区进行观测.将17500用科学记数表示为(精确到1000).12.如果式子有意义,那么的取值范围是.13.如图,在同一平面内,已知,直线平分,过点作于点,若,则.14.代数式的最小值是.15.已知不等式组,有四个整数解,则的取值范围为.16.如图,,,,且,则.17.甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.则a,b能使关于x的一元二次方程有两个不相等的实数根的概率为.18.人们把这个数叫做黄金分割数,著名数学家华罗庚优选法中的法就应用了黄金分割数.设,,则,记,,,…,则.19.如图,F是矩形ABCD内一点,,连接DF并延长交BC于点G,且点C与AB的中点E恰好关于直线DG对称,若,则AB的长为.20.如图,等边三角形的边长为2,以A为圆心,1为半径作圆分别交,边于D,E,再以点C为圆心,长为半径作圆交边于F,连接E,F,那么图中阴影部分的面积为:.三、解答题(本大题共7个小题,共60分.解答应写出文字说明,证明过程或演算步骤)21.(本小题满分7分)先化简,再求值:,其中,.22.(本小题满分7分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)在图中画出关于轴对称的;(2)将先向左平移4个单位长度,再向上平移2个单位长度,画出平移后的;(3)在中有一点,则经过以上两次变换后点的对应点的坐标为______.23.(本小题满分8分)在全国节能宣传周期间,某校组织开展主题为“节能降碳,你我同行”的社会实践活动.某组同学在甲、乙两个小区各随机抽取50户居民,获得了他们1月份的用电量(单位:kW·h),分别将两个小区居民用电量的数据分成5组:,,,,,并对数据进行整理和分析,下面给出部分信息:信息一:信息二:乙小区居民1月份用电量在这一组的数据是106

118

120

122

123

125

125

127

128

130

130131

133

133

133

134

137

140

142

143

149信息三:甲、乙两个小区居民1月份用电量的平均数、中位数如下.甲小区乙小区平均数/kW·h120130中位数/kW·h118根据以上信息,解答下列问题:(1)填空:__________,___________.(2)在扇形统计图中,“”所在扇形圆心角的度数为__________°.(3)若甲小区共有1000户居民,乙小区共有800户居民,试估计这两个小区1月份用电量大于150kW·h的总户数.(4)请选择一种统计量分析这两个小区1月份的用电情况,并提出一条能够节能降碳的建议.24.(本小题满分8分)某公司准备购进,两种原料生产甲、乙两种产品,已知千克原料比千克原料少元,且购进原料千克和原料千克共需元,生产件甲产品和件乙产品所需,原料数量及每件产品可获得的利润如表:产品种类原料千克原料千克每件产品可获得的利润元甲乙(1)求,两种原料每千克各多少元?(2)现该公司购进原料千克,原料千克,计划生产甲、乙两种产品共件,请利用函数的性质说明哪种生产方案获得的总利润最大?最大利润是多少?25.(本小题满分10分)如图,在矩形中,的平分线交于点,交的延长线于点,点为中点,连接、.(1)试判断的形状,并说明理由;(2)求的度数.26.(本小题满分10分)如图,,是的两条直径,且,点E是上一动点(不与点B,D重合),连接并延长交的延长线于点F,点P在上,且,连接,分别交,于点M,N,连接,设的半径为r.(1)求证:是的切线;(2)当时,求证:;(3)在点E的移动过程中,判断是否为定值,若是,求出该定值;若不是,请说明理由.27.(本小题满分10分)在平面直角坐标系,抛物线与x轴分别交于A,B两点(A在B左侧),与y轴交于点,已知顶点M的坐标为.(1)求抛物线的解析式并求出点A,B的坐标;(2)如图1,P,Q是抛物线对称轴上两点(点P在点Q上方),且,当取最小值时,求点P的坐标;(3)如图2,点D是第四象限内抛物线上一动点,过点D作轴于F,的外接圆与相交于点E.问:线段的长是否为定值?如果是,求出这个定值;如果不是,说明理由.2024年中考第二次模拟考试(黑龙江哈尔滨卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列实数中,最大的是(

)A. B. C.0 D.【答案】D【分析】本题考查了实数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.先化简绝对值,然后把选项中的4个数按从小到大排列,即可得出最大的数.【详解】解:∵,∴,∴最大的数是.故选:D.2.下列运算结果正确的是(

)A. B.C. D.【答案】B【分析】本题考查了有理数的乘方,积的乘方,分式的性质,完全平方公式;根据以上知识逐项分析判断,即可求解.【详解】解:A.,故该选项不正确,不符合题意;B.,故该选项正确,符合题意;C.,故该选项不正确,不符合题意;

D.,故该选项不正确,不符合题意;故选:B.3.下列图形既是轴对称图形,又是正方体的平面展开图的是(

)A.

B.

C.

D.

【答案】B【分析】本题考查了几何体的展开图和轴对称的性质等知识点,由正方体的展开图和轴对称的性质的特征解题即可,熟练掌握几何体的展开图和轴对称的性质是解决此题的关键.【详解】A、是正方体的展开图但不是轴对称图形,不符合题意;B、是正方体的展开图也是轴对称图形,符合题意;C、是轴对称图形但不是正方体的展开图,不符合题意;D、是正方体的展开图但不是轴对称图形,不符合题意;故选:B.4.2023年长沙国际马拉松在芙蓉中路(贺龙体育中心东广场旁)起跑,来自国内外的26000名跑友汇成一片红色的海洋驰聘在长马赛道上,他们用脚步丈量星城,感受一江两岸、山水洲城的魅力,图①是此次全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台从正面看到的平面图形是(

)A. B. C. D.【答案】A【分析】本题考查主视图,掌握三视图的特征是解题关键.主视图是从几何体正面观察到的视图.【详解】解:领奖台从正面看,是由三个长方形组成的.三个长方形,右边最低,中间最高,故选:A.5.如图,反比例函数(,且k为常数)的图象与直线(,且a为常数)交于、B两点,则点B的坐标为()A. B. C. D.【答案】D【分析】本题主要考查了一次函数与反比例函数综合,根据反比例函数的对称性可知点A和点B关于原点对称,据此求解即可.【详解】解:∵反比例函数(,且k为常数)的图象与直线(,且a为常数)交于、B两点,∴由反比例函数的对称性可知,点B的坐标为,故选:D.6.关于x的方程:的解是负数,则a的取值范围是()A. B.且 C. D.且【答案】B【分析】方程去分母化为整式方程,求得,再根据方程的解是负数,可得,且,即可求解.【详解】解:去分母得,,∴,∵方程的解是负数,且,∴,且,∴a的取值范围是且.故选:B.【点睛】本题考查了分式方程的求解和解不等式等知识,正确理解题意、熟练掌握分式方程的解法是根据.7.电影《长津湖》上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房约2亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达18亿元,将增长率记作x,则方程可以列为(

)A. B.C. D.【答案】D【分析】本题考查从实际问题中抽象出一元二次方程,解题的关键在于能够表示出第二玩耍和第三天的票房,设增长率为,则第二天的票房为,第三天的票房为,然后根据三天后累计票房收入达达18亿元列出方程即可.【详解】解:设增长率为,则第二天的票房为,第三天的票房为,由题可得:,故选:D.8.如图,菱形的对角线交于点,于点,若,,则的长为(

)A.12 B.10 C. D.【答案】C【分析】本题考查了菱形的性质,解直角三角形,解直角三角形求出是解决本题的关键.由菱形的性质得出,根据余弦求出,再根据勾股定理求解即可.【详解】解:∵四边形是菱形,∴,∵,∴,∴,∴,∴,∴.故选:C.9.如图,是的直径,切于点A,切于点B,且,,则点O到弦的距离为(

)A.2 B. C. D.【答案】B【分析】根据切线长定理结合已知条件得出为等边三角形,得出,,求出,过点作,垂足为H,根据垂径定理和即可求出结果.【详解】解:∵,分别与相切于点A,点C,∴,∵,∴为等边三角形,∴,,∵为的切线,∴,∴,∴,过点作,垂足为H,∴,∴,故选:B.【点睛】本题主要考查了切线的性质,切线长定理,等边三角形的判定和性质,直径所对的圆周角为直角,直角三角形的性质,解直角三角形,解题的关键是熟练掌握相关的性质和定理.10.如图1,矩形中,点为的中点,动点从点出发,沿折线匀速运动,到达点时停止运动,连接、,设为,为,且关于的函数图象如图2所示,则的最大值为(

)A. B. C. D.【答案】B【分析】本题考查动点问题与函数图象,矩形的性质,勾股定理,利用数形结合的思想是解题关键.在函数图象中找到当时,,得出,进而得到,再利用图象的拐点得出,由图象知到达时得最长,由勾股定理即可求出其值.【详解】解:由图知,当时,,即当在点时,点为的中点,,,当在上运动时,慢慢增大,到点时,从图中的拐点可知,此时,,当在上运动时,先减小再增大,直到到达点时,此时最长,,故选:B.第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)11.中国空间站未来将单独发射一个光学舱,内设巡天望远镜,其分辨率与哈勃相当,视场角是哈勃的300多倍.在轨10年,可以对以上的天区,约17500平方度天区进行观测.将17500用科学记数表示为(精确到1000).【答案】【分析】先把百位上的数字进行四舍五入,然后用科学记数法表示即可.【详解】解:,故答案为:.【点睛】本题考查了近似数和科学记数法:经过四舍五入得到的数为近似数.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.12.如果式子有意义,那么的取值范围是.【答案】/【分析】本题考查了二次根式有意义的条件,分式有意义的条件,解一元一次不等式组,熟练掌握解一元一次不等式的方法是解题的关键.根据二次根式有意义的条件,分式有意义的条件列不等式组求解即可得出答案.【详解】解:∵有意义,∴∴,故答案为:.13.如图,在同一平面内,已知,直线平分,过点作于点,若,则.【答案】/55度【分析】本题考查平行线的性质,与角平分线有关的计算,根据对顶角,结合同旁内角互补,求出的度数,根据垂直的定义结合角平分线的定义和对顶角相等,求出的度数,再用,计算即可.【详解】解:∵直线平分,,∴,∵,∴,∵,∴,∴,∴;故答案为:.14.代数式的最小值是.【答案】【分析】本题考查了完全平方公式和非负数性质的应用能力,通过将原式变形为,再运用非负数的性质进行求解,关键是能对原式进行准确变形配方.【详解】解:,故答案为:.15.已知不等式组,有四个整数解,则的取值范围为.【答案】【分析】本题考查根据不等式组的解集的情况,求出参数的范围,先求出不等式组的解集,根据解集得到关于的不等式组,求解即可.【详解】解:解,得:,∵不等式组有四个整数解,∴,∴不等式组的整数解为,∴;故答案为:.16.如图,,,,且,则.【答案】【分析】本题主要考查了相似三角形的性质与判定,勾股定理,先利用勾股定理求出,再证明,得到,即,则.【详解】解:在中,由勾股定理得,∵,∴,又∵,∴,∴,即,∴,故答案为:.17.甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.则a,b能使关于x的一元二次方程有两个不相等的实数根的概率为.【答案】【分析】本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件.首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求解.【详解】解:画树状图如下:关于的一元二次方程有两个不相等的实数根,△,,由图可知,共有9种等可能的结果,其中能使关于x的一元二次方程有两个不相等的实数根的结果有5种,能使关于x的一元二次方程有两个不相等的实数根的概率为,故答案为:.18.人们把这个数叫做黄金分割数,著名数学家华罗庚优选法中的法就应用了黄金分割数.设,,则,记,,,…,则.【答案】2024【分析】本题考查分式的规律计算,正确掌握异分母分式的加减计算法则及运用规律解决问题是解题的关键.根据异分母分式加法法则分别求出、、⋯、的值,发现结果均为1,依此解答即可.【详解】解:,,,,∴.故答案为:202419.如图,F是矩形ABCD内一点,,连接DF并延长交BC于点G,且点C与AB的中点E恰好关于直线DG对称,若,则AB的长为.【答案】【分析】连接EF、EG、EC,由等腰三角形的性质得出EF⊥AB,得出EF是梯形ABGD的中位线,得出,设BG=x,则CG=6-x,,证出EF=CG,得出,解得x=3,则BG=3,EG=CG=6,由勾股定理求出BE,即可得出答案.【详解】解:连接EF、EG、EC,如图所示:∵四边形ABCD是矩形,∴BC=AD=6,AD∥BC,∠BAD=∠ABC=90°,∴AB⊥AD,∵AF=BF,点E是AB的中点,∴EF⊥AB,∴EF∥AD∥BC,∴EF是梯形ABGD的中位线,∠EFG=∠CGF,∴设BG=x,则CG=6-x,;∵点C与AB的中点E关于直线DG对称,∴EG=CG,∠CGF=∠EGF,∴∠EFG=∠EGF,∴EG=EF,∴EF=CG,∴解得:x=2,∴BG=2,EG=CG=4,∴∴AB=2BE=;故答案为:、【点睛】本题考查了矩形的性质、等腰三角形的判定与性质、梯形中位线定理、轴对称的性质、勾股定理等知识;熟练掌握矩形的性质和等腰三角形的判定与性质是解题的关键.20.如图,等边三角形的边长为2,以A为圆心,1为半径作圆分别交,边于D,E,再以点C为圆心,长为半径作圆交边于F,连接E,F,那么图中阴影部分的面积为:.【答案】【分析】本题考查了扇形的面积的计算,等边三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.过A作于M,于N,根据等边三角形的性质和解直角三角形求得,求得,根据阴影部分的面积即可求解.【详解】解:过A作于M,于N,∵等边三角形的边长为2,∴,∴,∵,∴,,∴,∵等边三角形,∴,∴,∴图中阴影部分的面积,故答案为:.三、解答题(本大题共7个小题,共60分.解答应写出文字说明,证明过程或演算步骤)21.(本小题满分7分)先化简,再求值:,其中,.解:, 3分∵,, 5分∴原式. 7分22.(本小题满分7分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)在图中画出关于轴对称的;(2)将先向左平移4个单位长度,再向上平移2个单位长度,画出平移后的;(3)在中有一点,则经过以上两次变换后点的对应点的坐标为______.(1)解:如图,即为所求; 2分(2)如图,即为所求; 4分(3)点关于轴的对称点为,再将先向左平移4个单位长度,再向上平移2个单位长度,得到:;故;故答案为:. 7分23.(本小题满分8分)在全国节能宣传周期间,某校组织开展主题为“节能降碳,你我同行”的社会实践活动.某组同学在甲、乙两个小区各随机抽取50户居民,获得了他们1月份的用电量(单位:kW·h),分别将两个小区居民用电量的数据分成5组:,,,,,并对数据进行整理和分析,下面给出部分信息:信息一:信息二:乙小区居民1月份用电量在这一组的数据是106

118

120

122

123

125

125

127

128

130

130131

133

133

133

134

137

140

142

143

149信息三:甲、乙两个小区居民1月份用电量的平均数、中位数如下.甲小区乙小区平均数/kW·h120130中位数/kW·h118根据以上信息,解答下列问题:(1)填空:__________,___________.(2)在扇形统计图中,“”所在扇形圆心角的度数为__________°.(3)若甲小区共有1000户居民,乙小区共有800户居民,试估计这两个小区1月份用电量大于150kW·h的总户数.(4)请选择―种统计量分析这两个小区1月份的用电情况,并提出一条能够节能降碳的建议.【详解】(1).根据题意可知乙小区第25,26个数在之间,这两个数是125,125,则.故答案为:16,125; 2分(2)根据题意可知,所以“”所在扇形圆心角的度数为.故答案为:; 4分(3)甲小区用电量大于的百分比为,乙小区用电量大于的百分比为,所以这两个小区1月份用电量大于的总户数为; 6分(4)拔掉家中一切不用的电源.(答案不唯一,合理即可). 8分24.(本小题满分8分)某公司准备购进,两种原料生产甲、乙两种产品,已知千克原料比千克原料少元,且购进原料千克和原料千克共需元,生产件甲产品和件乙产品所需,原料数量及每件产品可获得的利润如表:产品种类原料千克原料千克每件产品可获得的利润元甲乙(1)求,两种原料每千克各多少元?(2)现该公司购进原料千克,原料千克,计划生产甲、乙两种产品共件,请利用函数的性质说明哪种生产方案获得的总利润最大?最大利润是多少?【详解】(1)设种原料每千克是元,种原料每千克是元,依题意有: 1分,解得. 3分故A种原料每千克是元,种原料每千克是元; 4分(2)设生产甲产品件,则生产乙产品件,依题意有: 5分,解得, 7分设利润是元,则利润为:,,时,即生产甲产品件,生产乙产品件时,获得的总利润最大,最大利润是元. 8分25.(本小题满分10分)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论