2026届湖北省宜昌一中高二数学第一学期期末质量跟踪监视试题含解析_第1页
2026届湖北省宜昌一中高二数学第一学期期末质量跟踪监视试题含解析_第2页
2026届湖北省宜昌一中高二数学第一学期期末质量跟踪监视试题含解析_第3页
2026届湖北省宜昌一中高二数学第一学期期末质量跟踪监视试题含解析_第4页
2026届湖北省宜昌一中高二数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北省宜昌一中高二数学第一学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知分别表示随机事件发生的概率,那么是下列哪个事件的概率()A事件同时发生B.事件至少有一个发生C.事件都不发生D事件至多有一个发生2.已知圆,圆C2:x2+y2-x-4y+7=0,则“a=1”是“两圆内切”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.已知四面体中,,若该四面体的外接球的球心为,则的面积为()A. B.C. D.4.已知双曲线上点到点的距离为15,则点到点的距离为()A.9 B.6C.6或36 D.9或215.已知圆M与直线与都相切,且圆心在上,则圆M的方程为()A. B.C. D.6.下列命题中的假命题是()A.若log2x<2,则0<x<4B.若与共线,则与的夹角为0°C.已知各项都不为零的数列{an}满足an+1-2an=0,则该数列为等比数列D.点(π,0)是函数y=sinx图象上一点7.过点(-2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=08.“且”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件9.已知,,若不等式恒成立,则正数的最小值是()A.2 B.4C.6 D.810.已知两条平行直线:与:间的距离为3,则()A.25或-5 B.25C.5 D.21或-911.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于A、B两点,直线与抛物线C交于D、E两点,若与的斜率的平方和为2,则的最小值为()A.24 B.20C.16 D.1212.已知定义在R上的函数满足,且有,则的解集为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.与双曲线有共同的渐近线,并且经过点的双曲线方程是______14.正方体,点分别是的中点,则异面直线与所成角的余弦值为___________.15.已知抛物线的焦点为F,若抛物线上一点P到x轴的距离为2,则|PF|的值为___________.16.命题,恒成立是假命题,则实数a取值范围是________________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围.18.(12分)如图,在三棱柱中,,D为BC的中点,平面平面ABC(1)证明:;(2)已知四边形是边长为2的菱形,且,问在线段上是否存在点E,使得平面EAD与平面EAC的夹角的余弦值为,若存在,求出CE的长度,若不存在,请说明理由19.(12分)某港口船舶停靠的方案是先到先停,且每次只能停靠一艘船.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种方式对双方是否公平?请说明理由;(2)若甲、乙两船在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.20.(12分)已知与定点,的距离比为的点P的轨迹为曲线C,过点的直线l与曲线C交于M,N两点.(1)求曲线C的轨迹方程;(2)若,求.21.(12分)在平面直角坐标系中,动点,满足,记点的轨迹为(1)请说明是什么曲线,并写出它的方程;(2)设不过原点且斜率为的直线与交于不同的两点,,线段的中点为,直线与交于两点,,请判断与的关系,并证明你的结论22.(10分)如图,分别是椭圆C:的左,右焦点,点P在椭圆C上,轴,点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且,.(1)求椭圆C的方程;(2)已知M,N是椭圆C上的两点,若点,,试探究点M,,N是否一定共线?说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】表示事件至少有一个发生概率,据此得到答案.【详解】分别表示随机事件发生的概率,表示事件至少有一个发生的概率,故表示事件都不发生的概率.故选:C.2、B【解析】先得出圆的圆心和半径,求出两圆心间的距离,半径之差,根据两圆内切得出方程,从而得出答案.【详解】圆的圆心半径的圆心半径两圆心之间的距离为两圆的半径之差为当两圆内切时,,解得或所以当,可得两圆内切,当两圆内切时,不能得出(可能)故“”是“两圆内切”的充分不必要条件故选:B3、C【解析】根据四面体的性质,结合线面垂直的判定定理、球的性质、正弦定理进行求解即可.【详解】由图设点为中点,连接,由,所以,面,则面,且,所以球心面,所以平面与球面的截面为大圆,延长线与此大圆交于点.在三角形中,由,所以,由正弦定理知:三角形的外接圆半径为,设三角形的外接圆圆心为点,则面,有,则,设的外接圆圆心为点,则面,由正弦定理知:三角形PAB的外接圆半径为,所以,又三角形中,,所以为的角平分线,则,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中点,由,所以,故选:C.【点睛】关键点睛:运用正弦定理、勾股定理、线面垂直的判定定理是解题的关键.4、D【解析】利用双曲线的定义可得答案.【详解】设,,,为双曲线的焦点,则由双曲线定义,知,而所以或21故选:D.5、A【解析】由题可设,结合条件可得,即求.【详解】∵圆心在上,∴可设圆心,又圆M与直线与都相切,∴,解得,∴,即圆的半径为1,圆M的方程为.故选:A.6、B【解析】四个选项中需要分别利用对数函数的性质,向量共线的定义,等比数列的定义以及三角函数图像判断,根据题意结合知识点,即可得出结果.【详解】选项A,由于此对数函数单调递增,并且结合对数函数定义域,即可求得结果,所以是真命题;选项B,向量共线,夹角可能是或,所以是假命题;选项C,将式子变形可得,符合等比数列定义,所以是真命题;选项D,将点代入解析式,等号成立,所以是真命题;故选B.【点睛】本题考查命题真假的判定,根据题意结合各知识点即可判断真假,需要熟练掌握对数函数、等比数列、向量夹角以及三角函数的基本性质.7、A【解析】当直线被圆截得的最弦长最大时,直线要经过圆心,即圆心在直线上,然后根据两点式方程可得所求【详解】由题意得,圆的方程为,∴圆心坐标为∵直线被圆截得的弦长最大,∴直线过圆心,又直线过点(-2,1),所以所求直线的方程为,即故选:A8、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.9、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到关于的不等式,求解,即可得出结论.【详解】,因为不等式恒成立,所以,即,解得,所以.故选:B.【点睛】本题考查基本不等式的应用,考查一元二次不等式的解法,属于基础题.10、A【解析】根据平行直线的性质,结合平行线间距离公式进行求解即可.【详解】因为直线:与:平行,所以有,因为两条平行直线:与:间距离为3,所以,或,当时,;当时,,故选:A11、C【解析】设两条直线方程,与抛物线联立,求出弦长的表达式,根据基本不等式求出最小值【详解】抛物线的焦点坐标为,设直线:,直线:,联立得:,所以,所以焦点弦,同理得:,所以,因为,所以,故选:C12、A【解析】构造,应用导数及已知条件判断的单调性,而题设不等式等价于即可得解.【详解】设,则,∴在R上单调递增.又,则.∵等价于,即,∴,即所求不等式的解集为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设双曲线的方程为,将点代入方程可求的值,从而可得结果【详解】设与双曲线有共同的渐近线的双曲线的方程为,该双曲线经过点,所求的双曲线方程为:,整理得故答案为【点睛】本题考查双曲线的方程与简单性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.与共渐近线的双曲线方程可设为,只需根据已知条件求出即可.14、【解析】以为坐标原点建立空间直角坐标系,根据异面直线所成角的向量求法可求得结果.【详解】以为坐标原点,为轴可建立如图所示空间直角坐标系,设正方体棱长为,则,,,,,,,即异面直线与所成角的余弦值为.故答案为:.15、3【解析】先求出抛物线的焦点坐标和准线方程,再利用抛物线的定义可求得答案【详解】抛物线的焦点为,准线为,因为抛物线上一点P到x轴的距离为2,所以由抛物线的定义可得,故答案为:316、【解析】由命题为假命题可得命题为真命题,由此可求a范围.【详解】∵命题,恒成立是假命题,∴,,∴,,又函数在为减函数,∴,∴,∴实数a的取值范围是,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2).【解析】(1)对求导得到,分和进行讨论,判断出的正负,从而得到的单调性;(2)设函数,分和进行讨论,根据的单调性和零点,得到答案.【详解】解:(1)函数定义域是,,当时,,函数在单调递增,无减区间;当时,令,得到,即,所以,,单调递增,,,单调递减,综上所述,时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2)由已知在恒成立,令,,可得,则,所以在递增,所以,①当时,,在递增,所以成立,符合题意.②当时,,当时,,∴,使,即时,在递减,,不符合题意.综上得【点睛】本题考查利用导数讨论函数的单调性,根据导数解决不等式恒成立问题,属于中档题.18、(1)证明见解析(2)存在,1【解析】(1)由面面垂直证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,利用空间向量进行求解.【小问1详解】∵,且D为BC的中点,∴,因为平面平面ABC,交线为BC,AD⊥BC,AD面ABC,所以AD⊥面,因为面,所以.【小问2详解】假设存在点E,满足题设要求连接,,∵四边形为边长为2的菱形,且,∴为等边三角形,∵D为BC的中点∴,∵平面平面ABC,交线为BC,面,所以面ABC,故以D为原点,DC,DA,分别为x,y,z轴的空间直角坐标系则,,,,设,,设面AED的一个法向量为,则,令,则设面AEC的一个法向量为,则,令,则设平面EAD与平面EAC的夹角为,则解得:,故点E为中点,所以19、(1)不公平,理由见解析.(2)【解析】(1)通过计算概率来进行判断.(2)利用几何概型计算出所求概率.【小问1详解】两数之和为奇数的概率为,两数之和为偶数的概率为,两个概率不相等,所以不公平.【小问2详解】设甲到的时刻为,乙到的时刻为,则,若它们中的任意一艘都不需要等待码头空出,则或,画出可行域如下图阴影部分所示,所以所求的概率为:.20、(1)(2)或【解析】(1)设曲线上的任意一点,由题意可得,化简即可得出(2)分直线的斜率不存在与存在两种情况讨论,当斜率不存在时,即可求出、的坐标,从而求出,当直线的斜率存在,设直线方程为,,,联立直线与圆的方程,消元列出韦达定理,则,即可求出,从而求出直线方程,由圆心在直线上,即可求出弦长;【小问1详解】解:(1)设曲线上的任意一点,由题意可得:,即,整理得【小问2详解】解:依题意当直线的斜率不存在时,直线方程为,则,则或,即、,所以、,所以满足条件,此时,当直线的斜率存在,设直线方程为,,,则,消去整理得,由,解得或,所以、,因为,,所以,解得,所以直线方程为,又直线过圆心,所以,综上可得或;21、(1)椭圆,(2),证明见解析【解析】(1)结合椭圆第一定义直接判断即可求出的轨迹为;(2)设直线的方程为,,,联立椭圆方程,写出韦达定理;由中点公式求出点,进而得出直线方程,联立椭圆方程求出,结合弦长公式可求,可转化为,结合韦达定理可化简,进而得证.【小问1详解】设,,则因为,满足,即动点表示以点,为左、右焦点,长轴长为4,焦距为的椭圆,其轨迹的方程为;【小问2详解】可以判断出,下面进行证明:设直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论