江苏省吴江市青云中学2026届高一上数学期末达标检测模拟试题含解析_第1页
江苏省吴江市青云中学2026届高一上数学期末达标检测模拟试题含解析_第2页
江苏省吴江市青云中学2026届高一上数学期末达标检测模拟试题含解析_第3页
江苏省吴江市青云中学2026届高一上数学期末达标检测模拟试题含解析_第4页
江苏省吴江市青云中学2026届高一上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省吴江市青云中学2026届高一上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义在R上的偶函数,且在区间单调递增.若实数a满足,则a的取值范围是A. B.C. D.2.下列函数中,既是奇函数又在定义域上是增函数的为A. B.C. D.3.不等式x2≥2x的解集是()A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}4.下列直线中,倾斜角为45°的是()A. B.C. D.5.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,则()A. B.C. D.6.已知函数的图像过点和,则在定义域上是A.奇函数 B.偶函数C.减函数 D.增函数7.过点作圆的两条切线,切点分别为,,则所在直线的方程为()A. B.C. D.8.已知直线:,:,:,若且,则的值为A. B.10C. D.29.“,”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件10.要证明命题“所有实数的平方都是正数”是假命题,只需()A.证明所有实数的平方都不是正数B.证明平方是正数的实数有无限多个C.至少找到一个实数,其平方是正数D.至少找到一个实数,其平方不是正数二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图象一定过定点,则点的坐标是________.12.已知奇函数f(x),当x>0,fx=x213.设,向量,,若,则_______14.实数,满足,,则__________15.已知,,则________.16.若关于的不等式的解集为,则实数__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在①是函数图象的一条对称轴,②函数的最大值为2,③函数图象与y轴交点的纵坐标是1这三个条件中选取两个补充在下面题目中,并解答已知函数,______(1)求的解析式;(2)求在上的值域18.已知是定义在上的偶函数,当时,.(1)求在时的解析式;(2)若,在上恒成立,求实数的取值范围.19.证明:函数是奇函数.20.如图,有一块半径为4的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上,连接OC两点,OC与OB所形成的夹角为.(1)写出这个梯形周长y和的函数解析式,并写出它的定义域;(2)求周长y的最大值以及此时梯形的面积.21.已知函数的部分图象如下图所示.(1)求函数的解析式,并写出函数的单调递增区间;(2)将函数图象上所有点的横坐标缩短到原来的(纵坐标不变),再将所得的函数图象上所有点向左平移个单位长度,得到函数的图象.若函数的图象关于直线对称,求函数在区间上的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】函数是定义在上的偶函数,∴,等价为),即.∵函数是定义在上的偶函数,且在区间单调递增,∴)等价为.即,∴,解得,故选项为C考点:(1)函数的奇偶性与单调性;(2)对数不等式.【思路点晴】本题主要考查对数的基本运算以及函数奇偶性和单调性的应用,综合考查函数性质的综合应用根据函数的奇偶数和单调性之间的关系,综合性较强.由偶函数结合对数的运算法则得:,即,结合单调性得:将不等式进行等价转化即可得到结论.2、D【解析】选项,在定义域上是增函数,但是是非奇非偶函数,故错;选项,是偶函数,且在上是增函数,在上是减函数,故错;选项,是奇函数且在和上单调递减,故错;选项,是奇函数,且在上是增函数,故正确综上所述,故选3、D【解析】由x2≥2x解得:x(x-2)≥0,所以x≤0或x≥2.选D.4、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线的倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C5、B【解析】由三角函数定义列式,计算,再由所给条件判断得解.【详解】由题意知,故,又,∴.故选:B6、D【解析】∵f(x)的图象过点(4,0)和(7,1),∴∴f(x)=log4(x-3).∴f(x)是增函数.∵f(x)的定义域是(3,+∞),不关于原点对称.∴f(x)为非奇非偶函数故选D7、B【解析】先由圆方程得到圆心和半径,求出的长,以及的中点坐标,得到以为直径的圆的方程,由两圆方程作差整理,即可得出所在直线方程.【详解】因为圆的圆心为,半径为,所以,的中点为,则以为直径的圆的方程为,所以为两圆的公共弦,因此两圆的方法作差得所在直线方程为,即.故选:B.【点睛】本题主要考查求两圆公共弦所在直线方法,属于常考题型.8、C【解析】由且,列出方程,求得,,解得的值,即可求解【详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以故选C【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题9、A【解析】根据充分条件和必要条件的定义判断.【详解】∵“,”可推出“”,“”不能推出“,”,例如,时,,∴“,”是“”充分不必要条件.故选:A10、D【解析】全称命题是假命题,则其否定一定是真命题,判断选项.【详解】命题“所有实数的平方都是正数”是全称命题,若其为假命题,那么命题的否定是真命题,所以只需“至少找到一个实数,其平方不是正数.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令,得,再求出即可得解.【详解】令,得,,所以点的坐标是.故答案:12、-10【解析】根据函数奇偶性把求f-2的值,转化成求f2【详解】由f(x)为奇函数,可知f-x=-f又当x>0,fx=故f故答案为:-1013、【解析】根据向量共线的坐标表示,得到,再由二倍角的正弦公式化简整理,即可得出结果.【详解】∵,向量,,∴,∴,∵,∴故答案为:.【点睛】本题主要考查由向量共线求参数,涉及二倍角的正弦公式,熟记向量共线的坐标表示即可,属于常考题型.14、8【解析】因为,,所以,,因此由,即两交点关于(4,4)对称,所以8点睛:利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合的思想求解.15、【解析】根据已知条件求得的值,由此求得的值.【详解】依题意,两边平方得,而,所以,所以.由解得,所以.故答案为:【点睛】知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.16、【解析】先由不等式的解得到对应方程的根,再利用韦达定理,结合解得参数a即可.【详解】关于的不等式的解集为,则方程的两根为,则,则由,得,即,故.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)条件选择见解析,;(2).【解析】(1)选择①②直接求出A及的解;选择①③,先求出,再由求A作答;选择②③,直接可得A,再由求作答.(2)由(1)结合正弦函数的性质即可求得在上的值域.【小问1详解】选择①②,,由及得:,所以的解析式是:.选择①③,由及得:,即,而,则,即,解得,所以的解析式是:.选择②③,,而,即,又,则有,所以的解析式是:.【小问2详解】由(1)知,,当时,,则当,即时,,当,即时,,所以函数在上的值域是.18、(1);(2).【解析】(1)利用函数的奇偶性结合条件即得;(2)由题可知在上恒成立,利用函数的单调性可求,即得.【小问1详解】∵当时,,∴当时,,∴,又是定义在上的偶函数,∴,故当时,;【小问2详解】由在上恒成立,∴在上恒成立,∴又∵与在上单调递增,∴,∴,解得或,∴实数的取值范围为.19、证明见解析【解析】由奇偶性的定义证明即可得出结果.【详解】中,,即,的定义域为,关于原点对称,,,函数是奇函数.20、(1),(2)20,【解析】(1)过点C作,表示出,,即可写出梯形周长y和的函数解析式;(2)令,结合二次函数求出y的最大值,求出此时的,再计算梯形面积即可.【小问1详解】由题意得.半圆形钢板半径为4,则,过点C作.在和中,有,,.在中,因为,为等腰三角形,故,所以,.,.【小问2详解】由.令,则,则.则当时,周长y有最大值,最大值20,此时,.故梯形的高,,.21、(1),递增区间为;(2).【解析】(1)由三角函数的图象,求得函数的解析式,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得,根据的图象关于直线对称,求得的值,得到,结合三角函数的性质,即可求解.【详解】(1)由图象可知,,所以,所以,由图可求出最低点的坐标为,所以,所以,所以,因为,所以,所以,由,可得.所以函数的单调递增区间为.(2)由题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论