版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省岳阳市第五中学等2026届高一上数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,只需要把函数的图象上所有的点①向左平移个单位,再把所有各点的横坐标缩短到原来的倍;②向左平移个单位,再把所有各点的横坐标缩短到原来的倍;③各点的横坐标缩短到原来的倍,再向左平移个单位:④各点的横坐标缩短到原来的倍,再向左平移个单位其中命题正确的为()A.①③ B.①④C.②③ D.②④2.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积S可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦----秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A.6 B.9C.12 D.183.函数的零点所在区间为()A. B.C. D.4.已知,则下列结论正确的是()A. B.C. D.5.已知y=(x-m)(x-n)+2022(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是()A.α<m<n<β B.m<α<n<βC.m<α<β<n D.α<m<β<n6.如图,在正中,均为所在边的中点,则以下向量和相等的是()A B.C. D.7.已知,则()A. B.C. D.8.已知集合,.则()A. B.C. D.9.已知函数的图象如图所示,则函数的图象为A.B.C.D.10.向量,若,则k的值是()A.1 B.C.4 D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.12.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________.13.函数的单调递增区间为__________14.设平行于轴的直线分别与函数和的图像相交于点,,若在函数的图像上存在点,使得为等边三角形,则点的纵坐标为_________.15.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.16.已知,是相互独立事件,且,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,角的始边与轴的非负半轴重合,终边在第二象限且与单位圆相交于点,过点作轴的垂线,垂足为点,.(1)求的值;(2)求的值.18.已知函数f(x)=sinωx-cosωx(ω>0)的最小正周期为π.(1)求函数y=f(x)图象对称轴方程;(2)讨论函数f(x)在上的单调性.19.已知函数求的最小正周期以及图象的对称轴方程当时,求函数的最大值和最小值20.已知.(1)求的值;(2)求的值.21.已知函数,(其中,,),的相邻两条对称轴间的距离为,且图象上一个最高点的坐标为.(Ⅰ)求的解析式;(Ⅱ)求的单调递减区间;(Ⅲ)当时,求的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用三角函数图象变换可得出结论.【详解】因为,所以,为了得到函数的图象,只需要把函数的图象上所有的点向左平移个单位,再把所有各点的横坐标缩短到原来的倍,或将函数的图象上各点的横坐标缩短到原来的倍,再向左平移个单位.故①④满足条件,故选:B.2、C【解析】根据题意可得,代入面积公式,配方即可求出最大值.【详解】由,,则,所以,当时,取得最大值,此时.故选:C3、B【解析】根据零点存在性定理即可判断求解.【详解】∵f(x)定义域为R,且f(x)在R上单调递增,又∵f(1)=-10<0,f(2)=19>0,∴f(x)在(1,2)上存在唯一零点.故选:B.4、B【解析】先求出,再对四个选项一一验证即可.【详解】因为,又,解得:.故A错误;对于B:,故B正确;对于C:,故C错误;对于D:,故D错误.故选:B5、C【解析】根据二次函数的性质判断【详解】记,由题意,,的图象是开口向上的抛物线,所以上递减,在上递增,又,,所以,,即(也可由的图象向下平移2022个单位得的图象得出判断)故选:C6、D【解析】根据相等向量的定义直接判断即可.【详解】与方向不同,与均不相等;与方向相同,长度相等,.故选:D.7、A【解析】利用诱导公式及正弦函数的单调性可判断的大小,利用正切函数的单调性可判断的范围,从而可得正确的选项.【详解】,,因为,故,而,因为,故,故,综上,,故选:A8、C【解析】直接利用交集的运算法则即可.【详解】∵,,∴.故选:.9、A【解析】根据函数的图象,可得a,b的范围,结合指数函数的性质,即可得函数的图象.【详解】解:通过函数的图象可知:,当时,可得,即.函数是递增函数;排除C,D.当时,可得,,,故选A【点睛】本题考查了指数函数的图象和性质,属于基础题.10、B【解析】首先算出的坐标,然后根据建立方程求解即可.【详解】因为所以,因为,所以,所以故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:12、【解析】求得长方体外接球的半径,从而求得球的表面积.【详解】由题知,球O的半径为,则球O的表面积为故答案为:13、【解析】由可得,或,令,因为在上递减,函数在定义域内递减,根据复合函数的单调性可得函数的单调递增区间为,故答案为.14、【解析】设直线的方程为,求得点,坐标,得到,取的中点,连接,根据三角形为等边三角形,表示出点坐标,根据点在函数的图象上,得到关于的方程,求出,进而可得点的纵坐标.【详解】设直线的方程为,由,得,所以点,由,得,所以点,从而,如图,取的中点,连接,因为为等边三角形,则,所以,,则点,因为点在函数的图象上,则,解得,所以点的纵坐标为.故答案为:.【点睛】关键点点睛:求解本题的关键在于先由同一参数表示出点坐标,再代入求解;本题中,先设直线,分别求出,坐标,得到等边三角形的边长,由此用表示出点坐标,即可求解.15、(1)(2),【解析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,16、【解析】由相互独立事件的性质和定义求解即可【详解】因为,是相互独立事件,所以,也是相互独立事件,因为,,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由三角函数的定义可得出的值,再结合同角三角函数的基本关系可求得的值;(2)利用诱导公式结合弦化切可求得结果.【小问1详解】解:由题意可知点的横坐标为,则,因为为第二象限角,则,故.【小问2详解】解:.18、(1);(2)单调增区间为;单调减区间为.【解析】(1)先化简得函数f(x)=sin,解不等式2x-=kπ+(k∈Z)即得函数y=f(x)图象的对称轴方程.(2)先求函数的单调递增区间为(k∈Z),再给k取值,得到函数f(x)在上的单调性.【详解】(1)∵f(x)=sinωx-cosωx=sin,且T=π,∴ω=2.于是,f(x)=sin.令2x-=kπ+(k∈Z),得x=+(k∈Z),故函数f(x)的对称轴方程为x=+(k∈Z).(2)令2kπ-≤2x-≤2kπ+(k∈Z),得函数f(x)的单调递增区间为(k∈Z).注意到x∈,令k=0,得函数f(x)在上的单调递增区间为;其单调递减区间为.【点睛】(1)本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握说和分析推理能力.(2)一般利用复合函数的单调性原理求复合函数的单调区间,首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.19、(1)最小正周期为,对称轴方程为(2)最小值0;最大值【解析】(1)先根据二倍角公式以及配角公式将函数化为基本三角函数,再根据正弦函数性质求周期以及图象的对称轴方程(2)先根据自变量范围,确定范围,再根据正弦函数图像得最值试题解析:解:的最小正周期为由得的对称轴方程为当时,当时,即时,函数f(x)取得最小值0;当时,即时,函数f(x)取得最大值20、(1);(2)【解析】(1)根据正切的差角公式求得,再利用正切的二倍角公式可求得答案;(2)根据同角三角函数的关系和正弦,余弦的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年厨房设计服务合同
- 2025年江苏省启东市委组织部引进国企专业化人才备考题库及答案详解一套
- 2025年中国兵器工业集团航空弹药研究院有限公司公开招聘安全总监备考题库及一套参考答案详解
- 2025年云南大学附属中学星耀学校招聘备考题库及一套答案详解
- 云南昭通检察系统招聘考试真题2024
- 2025年新疆兵团第九师白杨市公安局面向社会招录警务辅助人员30人备考题库及1套参考答案详解
- 2025年福清市人民法院关于公开招聘劳务派遣人员的备考题库及答案详解1套
- 2025年厦门银行南平分行招聘备考题库及一套答案详解
- 2025广东佛山市顺德区杏坛中心小学后勤服务人员招聘1人考试核心题库及答案解析
- 2025青海西宁市艺术实验中学招聘2人备考核心试题附答案解析
- 日历表2026年日历 英文版 横向排版 周一开始
- 2025版人教版高中物理精讲精练必修1专题强化03:水平和倾斜传送带模型 原卷版
- 统编版四年级上册语文期末专题复习课件2-6-文言文之超级访问
- 湘少版英语-6年级上册-单词表(带音标)
- 新概念英语第一册随堂练习-Lesson53~54 有答案
- 2020年智慧树知道网课《非英语国家文化(山东联盟)》课后章节测试满分答案
- 壅水计算完整版本
- 07FJ02防空地下室建筑构造
- 外研版(三起)(2024)三年级上册英语Unit 2 My school things单元测试卷(含答案)
- 化工建设综合项目审批作业流程图
- 马工程《经济法学》教学
评论
0/150
提交评论