版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省十堰市2026届数学高二上期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列{an}的前n项和为S,若,且,则S3等于()A.28 B.26C.28或-12 D.26或-102.已知三棱柱的所有棱长均为2,平面,则异面直线,所成角的余弦值为()A. B.C. D.3.已知一质点的运动方程为,其中的单位为米,的单位为秒,则第1秒末的瞬时速度为()A. B.C. D.4.过椭圆的左焦点作弦,则最短弦的长为()A. B.2C. D.45.已知数列,,则下列说法正确的是()A.此数列没有最大项 B.此数列的最大项是C.此数列没有最小项 D.此数列的最小项是6.在正四面体中,点为所在平面上动点,若与所成角为定值,则动点的轨迹是()A.圆 B.椭圆C.双曲线 D.抛物线7.已知椭圆的左右焦点分别为、,点在椭圆上,若、、是一个直角三角形的三个顶点,则点到轴的距离为A B.4C. D.8.某家大型超市近10天的日客流量(单位:千人次)分别为:2.5、2.8、4.4、3.6.下列图形中不利于描述这些数据的是()A.散点图 B.条形图C.茎叶图 D.扇形图9.的三个内角A,B,C所对的边分别为a,b,c,若,则()A. B.C. D.10.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为,则m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.311.已知圆的圆心在轴上,半径为2,且与直线相切,则圆的方程为A. B.或C. D.或12.已知为圆:上任意一点,则的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列中,,,则_______.14.已知点和,圆,当圆C与线段没有公共点时,则实数m的取值范围为___________15.已知双曲线中心在坐标原点,左右焦点分别为,渐近线分别为,过点且与垂直的直线分别交于两点,且,则双曲线的离心率为________16.已知线段AB的长度为3,其两个端点A,B分别在x轴、y轴上滑动,点M满足.则点M的轨迹方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥S−ABCD中,已知四边形ABCD是边长为的正方形,点S在底面ABCD上的射影为底面ABCD的中心点O,点P在棱SD上,且△SAC的面积为1(1)若点P是SD的中点,求证:平面SCD⊥平面PAC;(2)在棱SD上是否存在一点P使得二面角P−AC−D的余弦值为?若存在,求出点P的位置;若不存在,说明理由18.(12分)如图①,直角梯形中,,,点,分别在,上,,,将四边形沿折起,使得点,分别到达点,的位置,如图②,平面平面,.(1)求证:平面平面;(2)求二面角的余弦值.19.(12分)已知椭圆的一个焦点坐标为,离心率为(1)求椭圆C的标准方程;(2)O为坐标原点,点P在椭圆C上,若的面积为,求点P的坐标20.(12分)求满足下列条件的圆锥曲线的标准方程:(1)已知椭圆的焦点在x轴上且一个顶点为,离心率为;(2)求一个焦点为,渐近线方程为的双曲线的标准方程;(3)抛物线,过其焦点斜率为1的直线交抛物线于A、B两点,且线段AB的中点的纵坐标为2.21.(12分)已知数列满足,.(1)求数列的通项公式;(2)记,其中表示不超过最大整数,如,.(i)求、、;(ii)求数列的前项的和.22.(10分)定义:设是空间的一个基底,若向量,则称有序实数组为向量在基底下的坐标.已知是空间的单位正交基底,是空间的另一个基底,若向量在基底下的坐标为(1)求向量在基底下的坐标;(2)求向量在基底下的模
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据等比数列的通项公式列出方程求解,直接计算S3即可.【详解】由可得,即,所以,又,解得,所以,即,当时,,所以,当时,,所以,故选:C2、A【解析】建立空间直角坐标系,利用向量法求解【详解】以为坐标原点,平面内过点且垂直于的直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,如图所示,则,,,,∴,,∴,∴异面直线,所成角的余弦值为.故选:A3、C【解析】求出即得解.【详解】解:由题意得,故质点在第1秒末的瞬时速度为.故选:C4、A【解析】求出椭圆的通径,即可得到结果【详解】过椭圆的左焦点作弦,则最短弦的长为椭圆的通径:故选:A5、B【解析】令,则,,然后利用函数的知识可得答案.【详解】令,则,当时,当时,,由双勾函数的知识可得在上单调递增,在上单调递减所以当即时,取得最大值,所以此数列的最大项是,最小项为故选:B6、B【解析】把条件转化为与圆锥的轴重合,面与圆锥的相交轨迹即为点的轨迹后即可求解.【详解】以平面截圆锥面,平面位置不同,生成的相交轨迹可以为抛物线、双曲线、椭圆、圆.令与圆锥的轴线重合,如图所示,则圆锥母线与所成角为定值,所以面与圆锥的相交轨迹即为点的轨迹.根据题意,不可能垂直于平面即轨迹不可能为圆.面不可能与圆锥轴线平行,即轨迹不可能是双曲线.可进一步计算与平面所成角为,即时,轨迹为抛物线,时,轨迹为椭圆,,所以轨迹为椭圆.故选:B.【点睛】本题考查了平面截圆锥面所得轨迹问题,考查了转化化归思想,属于难题.7、D【解析】设椭圆短轴的一个端点为根据椭圆方程求得c,进而判断出,即得或令,进而可得点P到x轴的距离【详解】解:设椭圆短轴的一个端点为M由于,,;,只能或令,得,故选D【点睛】本题主要考查了椭圆的基本应用考查了学生推理和实际运算能力是基础题8、A【解析】根据数据的特征以及各统计图表的特征分析即可;【详解】解:茎叶图、条形图、扇形图均能将数据描述出来,并且能够体现出数据的变化趋势;散点图表示因变量随自变量而变化的大致趋势,故用来描述该超市近10天的日客流量不是很合适;故选:A9、D【解析】利用正弦定理边化角,角化边计算即可.【详解】由正弦定理边化角得,,再由正弦定理角化边得,即故选:D.10、A【解析】先求得样本中心,代入回归方程,即可得答案.【详解】由题意得,又样本中心在回归方程上,所以,解得.故选:A11、D【解析】设圆心坐标,由点到直线距离公式可得或,进而求得答案【详解】设圆心坐标,因为圆与直线相切,所以由点到直线的距离公式可得,解得或.因此圆的方程为或.【点睛】本题考查利用直线与圆的位置关系求圆的方程,属于一般题12、C【解析】设,则的几何意义为圆上的点和定点连线的斜率,利用直线和圆相切,即可求出的最小值;【详解】圆,它圆心是,半径为1,设,则,即,当直线和圆相切时,有,可得,,的最小值为:,故选:二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据递推公式一一计算即可;【详解】解:因为,所以,,,故答案为:14、【解析】当点和都在圆的内部时,结合点与圆的位置关系得出实数m的取值范围,再由圆心到直线的距离大于半径得出实数m的取值范围.【详解】当点和都在圆的内部时,,解得或直线的方程为,即圆心到直线的距离为,当圆心到直线的距离大于半径时,,且.综上,实数m的取值范围为.故答案为:15、【解析】判断出三角形的形状,求得点坐标,由此列方程求得,进而求得双曲线的离心率.【详解】依题意设双曲线方程为,双曲线的渐近线方程为,右焦点,不妨设.由于,所以是线段的中点,由于,所以是线段的垂直平均分,所以三角形是等腰三角形,则.直线的斜率为,则直线的斜率为,所以直线的方程为,由解得,则,即,化简得,所以双曲线的离心率为.故答案为:16、【解析】设出动点,根据已知条件得到关于的方程.【详解】设,由,有,得,所以,由得:,所以点的轨迹的方程是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)存在,点P为棱SD靠近点D的三等分点【解析】(1)由的面积为1,得到,,由,点P为SD的中点,所以,同理可得,根据线面垂直的判断定理可得平面PAC,再由面面垂直的判断定理可得答案;(2)存在,分别以OB,OC,OS所在直线为x,y,z轴,建立空间直角坐标系,假设在棱SD上存在点P,设,求出平面PAC、平面ACD的一个法向量,由二面角的向量法可得答案.【小问1详解】因为点S在底面ABCD上的射影为O,所以平面ABCD,因为四边形ABCD是边长为的正方形,所以,又因为的面积为1,所以,,所以,因为,点P为SD的中点,所以,同理可得,因为,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小问2详解】存在,连接,由平面ABCD,平面ABCD,平面ABCD,又,可得两两垂直,分别以所在直线为x,y,z轴,建立空间直角坐标系,如图,则,,,,假设在棱SD上存在点P使二面角的余弦值为,设,,,所以,,设平面PAC的一个法向量为,则,因为,,所以,令,得,,因为平面ACD的一个法向量为,所以,化简得,解得或(舍),所以存在P点符合题意,点P为棱SD靠近点D的三等分点18、(1)证明见解析(2)【解析】(1)根据,,,,易证,再根据平面平面,,得到平面,进而得到,再利用线面垂直的判定定理证明平面即可;(2)根据(1)知,,两两垂直,以,,的方向分别为,,轴的正方向建立空间直角坐标系,分别求得平面的一个法向量和平面的一个法向量,设二面角的大小为,由求解.【小问1详解】解:因为,,,所以,,又,所以是等腰直角三角形,即,所以.由平面几何知识易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面.【小问2详解】由(1)知,,两两垂直,以,,的方向分别为,,轴的正方向,建立如图所示的空间直角坐标系,设,则,,,,F(1,0,0),则,,设平面的一个法向量为,由,得,取,则.由,,,得平面,所以平面的一个法向量为,设二面角的大小为,则,由图可知二面角为钝二面角,所以二面角的余弦值为.19、(1)(2)或或或【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)根据三角形的面积列方程,化简求得点的坐标.【小问1详解】设椭圆C的焦距为,由题意有,得,,故椭圆C的标准方程为;【小问2详解】设点P的坐标为,由的面积为,有,得,有,得,故点P的坐标为或或或20、(1)(2)(3)【解析】(1)设椭圆的标准方程为,根据题意,进而结合求解即可得答案;(2)设双曲线的方程为,进而结合题意得,,再结合解方程即可得答案;、(3)根据题意设直线的方程为,进而与抛物线联立方程并消去得,再结合韦达定理得,进而得答案.【小问1详解】解:根据题意,设椭圆的标准方程为,因为顶点为,离心率为,所以,所以,所以椭圆的方程为【小问2详解】解:因为双曲线的一个焦点为,设双曲线的方程为,因为渐近线方程为,所以,因为所以,所以双曲线的标准方程为【小问3详解】解:由题知抛物线的焦点为,因为过抛物线焦点斜率为1的直线交抛物线于A、B两点,所以直线的方程为,所以联立方程,消去得,设,所以,因为线段AB的中点的纵坐标为2,所以,解得.所以抛物线的标准方程为.21、(1);(2)(i),,;(ii).【解析】(1)推导出数列为等差数列,确定该数列的首项和公差,即可求得数列的通项公式;(2)(i)利用对数函数的单调性结合题中定义可求得、、的值;(ii)分别解不等式、、,结合题中定义可求得数列的前项的和.【小问1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开平市市直机关单位公开招考政府雇员考试题库附答案
- 中国民用航空飞行学院新津分院、广汉分院、洛阳分院 2025年秋季公开招聘工作人员考试题库附答案
- 北京市海淀区海淀街道社区卫生服务中心招聘一考试参考题库附答案
- 2026浙江富浙资产管理有限公司第一期招聘1人备考题库附答案
- 2026贵州天柱县总工会招聘专职工会社会工作者考试题库附答案
- 江西省军工集团所属子公司招聘(70人-高中可报)考试参考题库附答案
- 中国科学院东北地理与农业生态研究所学术期刊中心工作人员招聘考试题库及答案1套
- 中国人民财产保险股份有限公司漳州市分公司2026校园招聘考试题库附答案
- 清华大学出版社2026年校园招聘7人考试题库附答案
- 广西民族大学招聘(海洋与生物技术学院研究生教学秘书)备考题库及答案1套
- 《法律职业伦理(第三版)》课件全套 王进喜 第1-21章 法律职业-司法鉴定职业伦理
- 辽宁省地质勘探矿业集团有限责任公司招聘笔试题库2024
- 《山区公路桥梁典型病害手册(试行)》
- 110kv输电线路继电保护系统设计说明书-最终
- 墨尔本餐饮创业计划书
- (新平台)国家开放大学《农村社会学》形考任务1-4参考答案
- 2023燃煤电厂智慧电厂典型设计规范
- 献身国防事业志愿书范文
- 宋小宝小品《碰瓷》完整台词
- 2023年06月北京第一实验学校招考聘用笔试题库含答案解析
- 毛泽东思想和中国特色社会主义理论体系概论(山东师范大学)知到章节答案智慧树2023年
评论
0/150
提交评论