版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省滦州市高二上数学期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点在平面内,是平面的一个法向量,则下列各点在平面内的是()A. B.C. D.2.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切3.已知数列为等差数列,则下列数列一定为等比数列的是()A. B.C. D.4.若方程表示双曲线,则的取值范围是()A.或 B.C.或 D.5.已知空间向量,,,下列命题中正确的个数是()①若与共线,与共线,则与共线;②若,,非零且共面,则它们所在的直线共面;⑧若,,不共面,那么对任意一个空间向量,存在唯一有序实数组,使得;④若,不共线,向量,则可以构成空间的一个基底.A.0 B.1C.2 D.36.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或C.或 D.或7.已知为坐标原点,向量,点,.若点在直线上,且,则点的坐标为().A. B.C. D.8.若函数在上有且仅有一个极值点,则实数的取值范围为()A. B.C. D.9.箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,设事件=“至少有一件次品”,则的对立事件为()A.至多两件次品 B.至多一件次品C.没有次品 D.至少一件次品10.已知曲线,则曲线W上的点到原点距离的最小值是()A. B.C. D.11.已知抛物线的焦点为,点在抛物线上,且,则的横坐标为()A.1 B.C.2 D.312.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.某天上午只排语文、数学、体育三节课,则体育不排在第一节课的概率为_________14.设为三角形的一个内角,已知曲线:,则可能是___________.(写出不同曲线的名称,尽可能多.注:在一些问题情景中,直线可以理解成是特殊的曲线)15.已知,,若,则_________.16.曲线在处的切线与坐标轴围成的三角形面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图所示的几何体中,四边形是平行四边形,,,,四边形是矩形,且平面平面,,点是线段上的动点(1)证明:;(2)设平面与平面的夹角为,求的最小值18.(12分)已知函数.(1)当时,不等式恒成立,求实数的取值范围;(2)解关于的不等式:.19.(12分)已知O为坐标原点,点P在抛物线C:上,点F为抛物线C的焦点,记P到直线的距离为d,且.(1)求抛物线C的标准方程;(2)若过点的直线l与抛物线C相切,求直线l的方程.20.(12分)已知椭圆的中心在原点,焦点为,,且长轴长为4.(1)求椭圆的方程;(2)直线与椭圆相交于A,两点,求弦长.21.(12分)已知,以点为圆心圆被轴截得的弦长为.(1)求圆的方程;(2)若过点的直线与圆相切,求直线的方程.22.(10分)在下列所给的三个条件中任选一个,补充在下面问题中,并完成解答(若选择多个条件分别解答,则按第一个解答计分).①与直线平行;②与直线垂直;③直线l的一个方向向量为;已知直线l过点,且___________.(1)求直线l的一般方程;(2)若直线l与圆C:相交于M,N两点,求弦长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设平面内的一点为,由可得,进而可得满足的方程,将选项代入检验即可得正确选项.【详解】设平面内的一点为(不与点重合),则,因为是平面的一个法向量,所以,所以,即,对于A:,故选项A不正确;对于B:,故选项B正确;对于C:,故选项C不正确;对于D:,故选项D不正确,故选:B.2、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C3、A【解析】根据等比数列的定义判断【详解】设的公差是,即,显然,且是常数,是等比数列,若中一个为1,则,则不是等比数列,只要,,都不可能是等比数列,如,,故选:A4、A【解析】由和的分母异号可得【详解】由题意,解得或故选:A5、B【解析】用向量共线或共面的基本定理即可判断.【详解】若与,与共线,,则不能判定,故①错误;若非零向量共面,则向量可以在一个与组成的平面平行的平面上,故②错误;不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;,∴与共面,故不能组成一个基底,故④错误;故选:C.6、D【解析】由光的反射原理知,反射光线的反向延长线必过点,设反射光线所在直线的斜率为,则反射光线所在直线方程为:,即:.又因为光线与圆相切,所以,,整理:,解得:,或,故选D考点:1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.7、A【解析】由在直线上,设,再利用向量垂直,可得,进而可求E点坐标.【详解】因为在直线上,故存在实数使得,.若,则,所以,解得,因此点的坐标为.故选:A.【定睛】本题考查了空间向量的共线和数量积运算,考查了运算求解能力和逻辑推理能力,属于一般题目.8、C【解析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【点睛】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.9、C【解析】利用对立事件的定义,分析即得解【详解】箱子中有5件产品,其中有2件次品,从中随机抽取2件产品,可能出现:“两件次品”,“一件次品,一件正品”,“两件正品”三种情况根据对立事件的定义,事件=“至少有一件次品”其对立事件为:“两件正品”,即”没有次品“故选:C10、A【解析】化简方程,得到,求出的范围,作出曲线的图形,通过图象观察,即可得到原点距离的最小值详解】解:即为,两边平方,可得,即有,则作出曲线的图形,如下:则点与点或的距离最小,且为故选:A11、C【解析】利用抛物线的定义转化为到准线的距离,即可求得.【详解】抛物线的焦点坐标为,准线方程为,,∴,故选:C.12、D【解析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【点睛】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】写出语文、数学、体育的所有可能排列,找出其中体育不排在第一节课的情况,利用概率公式计算即可.【详解】所有可能结果如下:(语文,数学,体育);(语文,体育,数学);(数学,语文,体育):(数学,体育,语文);(体育,语文,数学);(体育,数学,语文),其中体育不排在第一节课的情况有四种,则体育不排在第一节课的概率14、焦点在轴上的椭圆,焦点在轴上的双曲线,两条直线.【解析】讨论,和三种情况,进而根据曲线方程的特征得到答案.【详解】若,则曲线:,而,曲线表示焦点在y轴上的椭圆;若,则曲线:或,曲线表示两条直线;若,则曲线:,而,曲线表示焦点在x轴上的双曲线.故答案为:焦点在y轴上椭圆,焦点在x轴上的双曲线,两条直线.15、【解析】由题意,,利用向量数量积的坐标运算可得,然后利用定积分性质可得,原式,最后利用微积分基本定理计算,,利用定积分的几何意义计算,即可得答案.【详解】解:因为,,且,所以,解得,所以====.故答案为:.16、【解析】先求导数,得出切线斜率,写出切线方程,然后可求三角形的面积.【详解】,当时,,所以切线方程为,即;令可得,令可得;所以切线与坐标轴围成的三角形面积为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)要证,只需证平面,只需证(由勾股定理可证),,只需证平面,只需证(由平面平面可证),(由可证),即可证明结论.(2)以为原点,所在直线分别为x轴,y轴,z轴,建立空间直角坐标系写出点与点的坐标由于轴,可设,可得出与的坐标设为平面的法向量,求出法向量.是关于的一个式子,求出的取值范围,即可求出的最小值【小问1详解】在中,,,,所以,所以所以是等腰直角三角形,即因为,所以又因为平面平面,平面平面,,所以平面又平面,所以又因为,EC,平面所以平面又平面,所以,所以在中,,,所以所以又因为,,所以,所以又,,平面所以平面又平面,所以【小问2详解】以为原点,所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系则,因为轴,可设,可求得,设为平面的法向量则令,解得,所以又因为是平面的法向量所以,因为,所以所以当时,取到最小值18、(1);(2)答案见解析.【解析】(1)由题设可得,进而可知在恒成立,即可求参数范围.(2)题设不等式等价于,讨论的大小并根据一元二次不等式的解法求解集即可.【小问1详解】当时,得,即.由,则,∴,即,∴,即,∴实数的取值范围是.【小问2详解】由,即,即.①当时,不等式解集为;②当时,不等式的解集为;③当时,不等式的解集为.综上,当时﹐不等式的解集为;当时,不等式的解集为﹔当时,不等式的解集为.19、(1);(2)或.【解析】(1)根据抛物线的定义进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式进行求解即可.【小问1详解】因为,所以P到直线的距离等于,所以抛物线C的准线为,所以,,所以抛物线C的标准方程为;【小问2详解】当直线l的斜率不存在时,方程为,此时直线l恰与抛物线C相切当直线l的斜率存在时,设其方程为,联立方程,得若,显然不合题意;若,则,解得此时直线l的方程为综上,直线l与抛物线C相切时,l的方程为或.20、(1)(2)【解析】(1)由已知直接可得;(2)联立方程组求出A,两点坐标,再由两点间距离公式可得.【小问1详解】∵椭圆的中心在原点,焦点为,且长轴长为4,,,,故椭圆的方程为;【小问2详解】设,联立解得和,,∴弦长.21、(1)(2)或【解析】(1)根据垂径定理,可直接计算出圆的半径;(2)根据直线的斜率是否存在分类讨论,斜率不存在时,可得到直线方程为的直线满足题意,斜率存在时,利用直线与圆相切,即到直线的距离等于半径,然后解出关于斜率的方程即可.【小问1详解】不妨设圆的半径为,根据垂径定理,可得:解得:则圆的方程为:【小问2详解】当直线的斜率不存在时,则有:故此时直线与圆相切,满足题意当直线的斜率存在时,不妨设直线的斜率为,点的直线的距离为直线的方程为:则有:解得:,此时直线的方程为:综上可得,直线的方程为:或22、(1)若选择①②,则直线方程为:;若选择③,则直线方程为;(2)若选择①②,则;若选择③,则.【解析】(1)根据所选择的条件,结合直线过点,即可写出直线的方程;(2)利用(1)中所求直线方程,以及弦长公式,即可求得结果.【小问1详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年云南省保山地区单招职业倾向性考试题库及答案详解1套
- 2026年扬州中瑞酒店职业学院单招职业适应性测试题库及答案详解1套
- 2026年临沂职业学院单招职业技能测试题库含答案详解
- 2026年咸宁职业技术学院单招综合素质考试题库及完整答案详解1套
- 2026年青岛航空科技职业学院单招职业倾向性测试题库及参考答案详解一套
- 2026年浙江金融职业学院单招职业技能测试题库及答案详解一套
- 2026年浙江万里学院单招职业适应性测试题库及参考答案详解一套
- 物联网设备合同协议
- 无人机动力系统安全措施
- 神秘客户行为观察协议
- 中国融通集团2025届秋季校园招聘笔试历年参考题库附带答案详解
- 企业网络安全体系建设方案
- 机动车驾驶员考试《科目四》试卷及答案(2025年)
- 贵州省贵阳市2026届高三上学期11月质量监测(期中)物理试卷(含解析)
- 雨课堂学堂在线学堂云《成语与中国文化(复旦大学 )》单元测试考核答案
- 2025年四川省高职单招中职类职业技能综合测试(电子信息类)
- 护理指标解读
- 路牌应急预案
- 学校学生助学金管理制度
- 公安违规饮酒试题及答案
- 软件开发项目源代码移交规范
评论
0/150
提交评论