2026届浙江省温州市示范名校高一数学第一学期期末监测模拟试题含解析_第1页
2026届浙江省温州市示范名校高一数学第一学期期末监测模拟试题含解析_第2页
2026届浙江省温州市示范名校高一数学第一学期期末监测模拟试题含解析_第3页
2026届浙江省温州市示范名校高一数学第一学期期末监测模拟试题含解析_第4页
2026届浙江省温州市示范名校高一数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届浙江省温州市示范名校高一数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,集合,则等于()A(1,2) B.(1,2]C.[1,2) D.[1,2]2.定义在实数集上的奇函数恒满足,且时,,则()A. B.C.1 D.3.已知函数对任意都有,则等于A.2或0 B.-2或0C.0 D.-2或24.若a>b>1,0<c<1,则下列式子中不正确的是()A. B.C. D.5.是所在平面上的一点,满足,若,则的面积为()A.2 B.3C.4 D.86.已知直线,平面满足,则直线与直线的位置关系是A.平行 B.相交或异面C.异面 D.平行或异面7.已知集合,若,则()A.-1 B.0C.2 D.38.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:),可得这个几何体的体积(单位:cm3)是A.4 B.5C.6 D.79.已知函数,方程在有两个解,记,则下列说法正确的是()A.函数的值域是B.若,的增区间为和C.若,则D.函数的最大值为10.在中,下列关系恒成立的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设奇函数对任意的,,有,且,则的解集___________.12.如图,已知△和△有一条边在同一条直线上,,,,在边上有个不同的点F,G,则的值为______13.不等式的解为______14.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________15.已知扇形的半径为4,圆心角为,则扇形的面积为___________.16.已知集合(1)当时,求的非空真子集的个数;(2)当时,若,求实数的取值范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)若为第三象限角,求的值(2)求的值(3)求的值18.已知A(1,1)和圆C:(x+2)2+(y﹣2)2=1,一束光线从A发出,经x轴反射后到达圆C(1)求光线所走过的最短路径长;(2)若P为圆C上任意一点,求x2+y2﹣2x﹣4y的最大值和最小值19.已知,,,且.(1)求的值;(2)求的值.20.已知集合,集合(1)当时,求;(2)若,求实数的取值范围在①;②“”是“”的充分条件;③这三个条件中任选一个,补充到本题第(2)问的横线处,并解答注:如果选择多个条件分别解答,按第一个解答计分21.已知定义在上的奇函数,当时,.(1)求函数在上的解析式;(2)在给出的直角坐标系中作出的图像,并写出函数的单调区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由指数函数、对数函数的性质可得、,再由交集的运算即可得解.【详解】因为,,所以.故选:B.【点睛】本题考查了指数不等式的求解及对数函数性质的应用,考查了集合交集的运算,属于基础题.2、B【解析】根据函数奇偶性和等量关系,求出函数是周期为4的周期函数,利用函数的周期性进行转化求解即可【详解】解:奇函数恒满足,,即,则,即,即是周期为4的周期函数,所以,故选:B3、D【解析】分析:由条件可得,函数f(x)的图象关于直线x=对称,故f()等于函数的最值,从而得出结论详解:由题意可得,函数f(x)的图象关于直线x=对称,故f()=±2,故答案为±2点睛:本题考查了函数f(x)=Asin(ωx+φ)的图象与性质的应用问题,是基础题目.一般函数的对称轴为a,函数的对称中心为(a,0).4、D【解析】利用对数函数、指数函数与幂函数的单调性即可判断出正误.【详解】解:,,,A正确;是减函数,,B正确;为增函数,,C正确.是减函数,,D错误.故选.【点睛】本题考查了对数函数、指数函数与幂函数的单调性,考查了推理能力与计算能力,属于基础题.5、A【解析】∵,∴,∴,且方向相同∴,∴.选A6、D【解析】∵a∥α,∴a与α没有公共点,b⊂α,∴a、b没有公共点,∴a、b平行或异面故选D.7、C【解析】根据元素与集合的关系列方程求解即可.【详解】因为,所以或,而无实数解,所以.故选:C8、A【解析】如图三视图复原的几何体是底面为直角梯形,是直角梯形,,一条侧棱垂直直角梯形的直角顶点的四棱锥,即平面所以几何体的体积为:故选A【点睛】本题考查几何体的三视图,几何体的表面积的求法,准确判断几何体的形状是解题的关键9、B【解析】利用函数的单调性判断AB选项;解方程求出从而判断C选项;举反例判断D选项.【详解】对于A选项,当时,,,为偶函数,当时,,任取,且,,若,则;若,则,即函数在区间上单调递减,在区间上单调递增,图像如图示:结合偶函数的性质可知,的值域是,故A选项错误;对于B选项,,当时,,,则为偶函数,当时,,易知函数在区间上单调递减,当时,,易知函数在区间上单调递增,图像如图示:根据偶函数的性质可知,函数的增区间为和,故B选项正确;对于C选项,若,图像如图示:若,则,与方程在有两个解矛盾,故C选项错误;对于D选项,若时,,图像如图所示:当时,则与方程在有两个解矛盾,进而函数的最大值为4错误,故D选项错误;故选:B10、D【解析】利用三角函数诱导公式,结合三角形的内角和为,逐个去分析即可选出答案【详解】由题意知,在三角形ABC中,,对A选项,,故A选项错误;对B选项,,故B选项错误;对C选项,,故C选项错误;对D选项,,故D选项正确.故选D.【点睛】本题考查了三角函数诱导公式,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】可根据函数的单调性和奇偶性,结合和,分析出的正负情况,求解.【详解】对任意,,有故在上为减函数,由奇函数的对称性可知在上为减函数,则则,,,;,;,;,.故解集为:故答案为:【点睛】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性12、16【解析】由题意易知:△和△为全等的等腰直角三角形,斜边长为,,故答案为16点睛:平面向量数量积类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cosθ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.本题就是利用几何意义处理的.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.13、【解析】根据幂函数的性质,分类讨论即可【详解】将不等式转化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此时无解;综上,不等式的解集为:故答案为:14、①②④【解析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力.点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.15、【解析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积【详解】根据扇形的弧长公式可得,根据扇形的面积公式可得故答案为:16、(1)30(2)或【解析】(1)当时,可得中元素的个数,进而可得的非空真子集的个数;(2)根据,可分和两种情况讨论,可得出实数的取值范围【小问1详解】当时,,共有5个元素,所以的非空真子集的个数为【小问2详解】(1)当时,,解得;(2)当时,根据题意作出如图所示的数轴,可得或解得:或综上可得,实数的取值范围是或三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)化简式子可得,平方后利用同角三角函数的基本关系求解;(2)分子分母同除以,化切后,由两角和的正切公式可得解;(3)根据二倍角的余弦公式求解.【小问1详解】由可得,,平方得,,所以,即,因为为第三象限角,所以.【小问2详解】由可得,即,所以【小问3详解】由(1)知,,所以.18、(1);(2)最大值为11,最小值为﹣1【解析】(1)点关于x轴的对称点在反射光线上,当反射光线从点经轴反射到圆周的路程最短,最短为;(2)将式子化简得到,转化为点点距,进而转化为圆心到的距离,加减半径,即可求得最值.【详解】(1)关于x轴的对称点为,由圆C:(x+2)2+(y﹣2)2=1得圆心坐标为C(﹣2,2),∴,即光线所走过的最短路径长为;(2)x2+y2﹣2x﹣4y=(x﹣1)2+(y﹣2)2﹣5(x﹣1)2+(y﹣2)2表示圆C上一点P(x,y)到点(1,2)的距离的平方,由题意,得,因此,x2+y2﹣2x﹣4y的最大值为11,最小值为﹣1【点睛】本题考查最短路径问题,以及圆外一点到圆上一点的距离的最值问题,属于基础题;求最短路径时作对称点,由两点之间线段最短的原理确定长度,将圆外一点距离的最值转化为点到圆心的距离和半径之间的关系.19、(1).(2)【解析】(1)由已知根据同角三角函数的基本关系可求得,根据代入即可求得求得结果.(2)由(1)利用二倍角公式,可求得,进而可得的值,根据角的范围,即可确定结果.【详解】(1)∵,且∴∴又∵∴(2)∴∴或∵∴又∵∴∵,且∴又∵∴∴【点睛】本题考查同角三角函数的基本关系,二倍角公式,两角和与差的三角函数,考查已知三角函数值求角,属于基础题.20、(1)或(2)【解析】(1)根据集合的补集与交集定义运算即可;(2)选①②③中任何一个,都可以转化为,讨论与求解即可【小问1详解】化简集合有当时,,则或故或【小问2详解】选①②③

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论