版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省安庆第一中学高一上数学期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数,且当时,,那么A. B.C. D.2.已知角的终边经过点,则A. B.C. D.3.设,,,则的大小关系是()A. B.C. D.4.已知命题:角为第二或第三象限角,命题:,命题是命题的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.若a>b>1,0<c<1,则下列式子中不正确的是()A. B.C. D.6.已知函数,,则()A.的最大值为 B.在区间上只有个零点C.的最小正周期为 D.为图象的一条对称轴7.下列哪组中的两个函数是同一函数()A与 B.与C.与 D.与8.已知为平面,为直线,下列命题正确的是A.,若,则B.,则C.,则D.,则9.如果,那么下列不等式中,一定成立的是()A. B.C. D.10.()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,已知四棱锥P-ABCD,底面ABCD为正方形,PA⊥平面ABCD.给出下列命题:①PB⊥AC;②平面PAB与平面PCD的交线与AB平行;③平面PBD⊥平面PAC;④△PCD为锐角三角形.其中正确命题的序号是________12.已知,则的大小关系是___________________.(用“”连结)13.已知α∈.若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则=______.14.已知向量,若,则实数的值为______15.角的终边经过点,且,则________.16.若扇形AOB的圆心角为,周长为10+3π,则该扇形的面积为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知幂函数为偶函数(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围18.已知函数是定义在上的奇函数.(1)求实数的值,并求函数的值域;(2)判断函数的单调性(不需要说明理由),并解关于的不等式.19.已知函数,(1)求不等式的解集;(2)若有两个不同的实数根,求a的取值范围20.已知函数,直线是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y=g(x)的图象是由y=f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移个单位长度得到的,若求的值.21.如图,已知在正四棱锥中,为侧棱的中点,连接相交于点(1)证明:;(2)证明:;(3)设,若质点从点沿平面与平面的表面运动到点的最短路径恰好经过点,求正四棱锥的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意得,,故,故选C考点:分段函数的应用.2、D【解析】由任意角的三角函数定义列式求解即可.【详解】由角终边经过点,可得.故选D.【点睛】本题主要考查了任意角三角函数的定义,属于基础题.3、C【解析】根据对数函数和幂函数单调性可比较出大小关系.【详解】,;,,,即,又,.故选:C.4、D【解析】利用切化弦判断充分性,根据第四象限的角判断必要性.【详解】当角为第二象限角时,,所以,当角为第三象限角时,,所以,所以命题是命题的不充分条件.当时,显然,当角可以为第四象限角,命题是命题的不必要条件.所以命题是命题的既不充分也不必要条件.故选:D5、D【解析】利用对数函数、指数函数与幂函数的单调性即可判断出正误.【详解】解:,,,A正确;是减函数,,B正确;为增函数,,C正确.是减函数,,D错误.故选.【点睛】本题考查了对数函数、指数函数与幂函数的单调性,考查了推理能力与计算能力,属于基础题.6、D【解析】首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;【详解】解:函数,可得的最大值为2,最小正周期为,故A、C错误;由可得,即,可知在区间上的零点为,故B错误;由,可知为图象的一条对称轴,故D正确故选:D7、D【解析】根据同一函数的概念,逐项判断,即可得出结果.【详解】A选项,的定义域为,的定义域为,定义域不同,故A错;B选项,定义域为,的定义域为,定义域不同,故B错;C选项,的定义域为,的定义域为,定义域不同,故C错;D选项,与的定义域都为,且,对应关系一致,故D正确.故选:D.8、D【解析】选项直线有可能在平面内;选项需要直线在平面内才成立;选项两条直线可能异面、平行或相交.选项符合面面平行的判定定理,故正确.9、D【解析】取,利用不等式性质可判断ABC选项;利用不等式的性质可判断D选项.【详解】若,则,所以,,,ABC均错;因为,则,因为,则,即.故选:D.10、D【解析】根据诱导公式以及特殊角的三角函数值,即可容易求得结果.【详解】因为.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】设AC∩BD=O,由题意证明AC⊥PO,由已知可得AC⊥PA,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾说明①错误;由线面平行的判定和性质说明②正确;由线面垂直的判定和性质说明③正确;由勾股定理即可判断,说明④错误【详解】设AC∩BD=O,如图,①若PB⊥AC,∵AC⊥BD,则AC⊥平面PBD,∴AC⊥PO,又PA⊥平面ABCD,则AC⊥PA,在平面PAC内过P有两条直线与AC垂直,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾,①错误;②∵CD∥AB,则CD∥平面PAB,∴平面PAB与平面PCD的交线与AB平行,②正确;③∵PA⊥平面ABCD,∴平面PAC⊥平面ABCD,又BD⊥AC,∴BD⊥平面PAC,则平面PBD⊥平面PAC,③正确;④∵PD2=PA2+AD2,PC2=PA2+AC2,AC2=AD2+CD2,AD=CD,∴PD2+CD2=PC2,∴④△PCD为直角三角形,④错误,故答案为:②③12、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.13、-1【解析】根据幂函数,当为奇数时,函数为奇函数,时,函数在(0,+∞)上递减,即可得出答案.【详解】解:∵幂函数f(x)=xα为奇函数,∴可取-1,1,3,又f(x)=xα在(0,+∞)上递减,∴α<0,故=-1.故答案为:-1.14、;【解析】由题意得15、【解析】由题意利用任意角的三角函数的定义直接计算【详解】角的终边经过点,且,解得.故答案为:16、【解析】设扇形AOB的的弧长为l,半径为r,由已知可得l=3π,r=5,再结合扇形的面积公式求解即可.【详解】解:设扇形AOB的的弧长为l,半径为r,∴,l+2r=10+3π,∴l=3π,r=5,∴该扇形的面积S,故答案为:.【点睛】本题考查了扇形的弧长公式及扇形的面积公式,重点考查了方程的思想,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)由为幂函数知,得或又因为函数为偶函数,所以函数不符合舍去当时,,符合题意;.(2)由(1)得,即函数的对称轴为,由题意知在(2,3)上为单调函数,所以或,即或.18、(1),的值域为;(2)在上单调递增,不等式的解集为.【解析】(1)根据定义域为R时,代入即可求得实数的值;根据函数单调性,结合指数函数的性质即可求得值域.(2)根据解析式判断函数的单调性;结合函数单调性即可解不等式.【详解】(1)由题意易知,,故,所以,,故函数的值域为(2)由(1)知,易知在上单调递增,且,故,所以不等式的解集为.【点睛】本题考查了奇函数性质的综合应用,根据函数单调性解不等式,属于基础题.19、(1)(2)【解析】(1)利用三角恒等变换公式将化到最简形式,确定,在这个范围内解三角不等式即可;(2)确定在上的最值,根据有两个不同的实数根,得到a应满足的条件,解得答案.【小问1详解】原式化简后得,由,则∴,可得,即,故不等式的解集为【小问2详解】在上的单调递增区间为,单调递减区间为,当时,,,当时,,,当时,,,又有两个不同的实数根,则,∴,故a的取值范围为20、(1);(2)【解析】(1)首先化简函数,再根据是函数的一条对称轴,代入求,再求函数的单调递增区间;(2)先根据函数图象变换得到,并代入后,得,再利用角的变换求的值.【详解】(1),当时,,得,,,即,令,解得:,,函数的单调递增区间是;(2),,得,,,,【点睛】方法点睛:本题考查函数的图象变换,以及的性质,属于中档题型,的横坐标伸长(或缩短)到原来的倍,得到函数的解析式是,若向右(或左)平移()个单位,得到函数的解析式是或.21、(1)详见解析;(2)详见解析;(3).【解析】(1)由中位线定理可得线线平面,从而有线面平行;(2)正四棱锥中,底面是正方形,因此有,又PO是正四棱锥的高,从而有PO⊥AC,这样就有AC与平面PBD垂直,从而得面面垂直;(3)把与沿PD摊平,由A、M、C共线,因此新的平面图形是平行四边形,从而为菱形,M到底面ABCD的距离为原正四棱锥高PO的一半,计算可得体积试题解析:(1)证明:连接OM,∵O,M分别为BD,PD的中点,∴在△PBD中,OM//PB,又PB面ACM,OM面ACM,∴PB//面ACM(2)证明:连接PO.∵在正四棱锥中,PA=PC,O为AC的中点,∴PO⊥AC,BD⊥AC,又PO∩BD=O,AC⊥平面PBD,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- java课程设计大作业
- 2025浙江绍兴市文化市场执法指导中心招聘编制外人员2人考试重点题库及答案解析
- 985学校课程设计
- 中国科学院空间应用工程与技术中心2026届校园招聘备考题库及一套答案详解
- 2025江西江新造船有限公司招聘70人备考核心试题附答案解析
- 2025年智能手环紫外线监测技术五年技术演进报告
- 2025广东深圳市宝安区翻身实验学校(西校区)诚聘初中地理、初中道法和高中历史教师3人考试重点题库及答案解析
- 2025西双版纳勐海县融媒体中心招聘编外人员(1人)考试重点试题及答案解析
- 2025年甘肃省张掖市甘州区种业联合会招聘考试重点试题及答案解析
- 2025北京市丰台区北宫镇社区卫生服务中心招聘3人(一)考试重点试题及答案解析
- 2025西部机场集团航空物流有限公司招聘考试笔试参考题库及答案解析
- 供应商环保协议
- 教科版小学三年级上册科学实验报告20篇
- 2026广西壮族自治区公安机关人民警察特殊职位招录考试195人备考题库附答案详解(a卷)
- 2025年及未来5年市场数据中国LPG加气站行业市场全景调研及投资规划建议报告
- 2025年药店店员培训试卷及答案
- 卫生院对村卫生室基本公卫资金分配方案
- 内科常见疾病护理要点详解
- 工程接管合同协议书
- 2025年PMP项目管理专业人士资格考试模拟试卷及答案
- H2受体拮抗剂:临床定位与合理应用
评论
0/150
提交评论